Interactions of glucagon-like peptide-1 (GLP-1) with the blood-brain barrier
Glucagon-like peptide-1 (GLP-1) reduces insulin requirement in diabetes mellitus and promotes satiety. GLP-1 in the periphery (outside the CNS) has been shown to act on the brain to reduce food ingestion. As GLP-1 is readily degraded in blood, we focused on the interactions of [Ser8]GLP-1, an analog...
Gespeichert in:
Veröffentlicht in: | Journal of molecular neuroscience 2002-02, Vol.18 (1-2), p.7-14 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Glucagon-like peptide-1 (GLP-1) reduces insulin requirement in diabetes mellitus and promotes satiety. GLP-1 in the periphery (outside the CNS) has been shown to act on the brain to reduce food ingestion. As GLP-1 is readily degraded in blood, we focused on the interactions of [Ser8]GLP-1, an analog with similar biological effects and greater stability, with the blood-brain barrier (BBB). The influx of radiolabeled [Ser8]GLP-1 into brain has several distinctive characteristics: 1. A rapid influx rate of 8.867 +/- 0.798 x 10(4) mL/g-min as measured by multiple-time regression analysis after iv injection in mice. 2. Lack of self-inhibition by excess doses of the unlabeled [Ser8]GLP-1 either iv or by in situ brain perfusion, indicating the absence of a saturable transport system at the BBB. 3. Lack of modulation by short-term fasting and some other ingestive peptides that may interact with GLP-1, including leptin, glucagon, insulin, neuropeptide Y, and melanin-concentrating hormone. 4. No inhibition of influx by the selective GLP-1 receptor antagonist exendin(9-39), suggesting that the GLP-1 receptor is not involved in the rapid entry into brain. Similarly, there was no efflux system for [Ser8]GLP-1 to exit the brain other than following the reabsorption of cerebrospinal fluid (CSF). The fast influx was not associated with high lipid solubility. Upon reaching the brain compartment, substantial amounts of [Ser8]GLP-1 entered the brain parenchyma, but a large proportion was loosely associated with the vasculature at the BBB. Finally, the influx rate of [Ser8]GLP-1 was compared with that of GLP-1 in a blood-free brain perfusion system; radiolabeled GLP-1 had a more rapid influx than its analog and neither peptide showed the self-inhibition indicative of a saturable transport system. Therefore, we conclude that [Ser8]GLP-1 and the endogenous peptide GLP-1 can gain access to the brain from the periphery by simple diffusion and thus contribute to the regulation of feeding. |
---|---|
ISSN: | 0895-8696 0895-8696 1559-1166 |
DOI: | 10.1385/jmn:18:1-2:07 |