In vivo dissection of the Tat translocation pathway in Escherichia coli
The bacterial Tat pathway is capable of exporting folded proteins carrying a special twin arginine (RR) signal peptide. By using two in vivo reporter proteins, we assessed factors that affect Tat pathway transport. We observed that, like the intact RR signal peptide, those with a KR or RK substituti...
Gespeichert in:
Veröffentlicht in: | Journal of molecular biology 2002-03, Vol.317 (3), p.327-335 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 335 |
---|---|
container_issue | 3 |
container_start_page | 327 |
container_title | Journal of molecular biology |
container_volume | 317 |
creator | Ize, Bérengère Gérard, Fabien Zhang, Ming Chanal, Angélique Voulhoux, Romé Palmer, Tracy Filloux, Alain Wu, Long-Fei |
description | The bacterial Tat pathway is capable of exporting folded proteins carrying a special twin arginine (RR) signal peptide. By using two
in vivo reporter proteins, we assessed factors that affect Tat pathway transport. We observed that, like the intact RR signal peptide, those with a KR or RK substitution were still capable of mediating the translocation of the folded green fluorescent protein (GFP). However, the translocation efficiency decreased in the order of RR>KR>RK. The KK motif was unable to mediate GFP translocation. The translocation of the RR-GFP fusion required TatA, TatB and TatC proteins. By exploiting the periplasmic bactericidal property of colicin V (ColV), we constructed a translocation-suicide probe, RR-ColV. The translocation of RR-ColV fully inhibited the growth of wild-type
Escherichia coli and those of the Δ
tatD and Δ
tatE mutants. In contrast, the deletion of the
tatC gene blocked RR-ColV in the cytoplasm and this strain exhibited a normal growth phenotype. Interestingly, the growth of Δ
tatA and
tatB mutants was inhibited partially by RR-ColV. Moreover, KR, RK and KK motifs were capable of mediating the ColV translocation with a decreasing RR=KR>RK>KK efficiency. In addition to TatE and TatC proteins, either TatA or TatB was sufficient for the translocation of RR-ColV or KR-ColV. In contrast, TatA plus the conserved N-terminal domain of TatB were required to mediate the killing effect of ColV fused to the less-efficient RK signal peptide. Taken together, these results suggest that a fully efficient Tat pathway transport is determined by the sequence of the signal peptide, the composition of the Tat apparatus, and the intrinsic characteristics of exported proteins. |
doi_str_mv | 10.1006/jmbi.2002.5431 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_71559644</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022283602954318</els_id><sourcerecordid>71559644</sourcerecordid><originalsourceid>FETCH-LOGICAL-c437t-61c838ac59a992b34057199e0d67be136cfc8fa749967f7533907a4005b76673</originalsourceid><addsrcrecordid>eNqFkM9LwzAYhoMobk6vHiUnb61J8_soY87BwMvuIU1TmtE1M-km--9t3cCTePrg-5735eMB4BGjHCPEX7a70ucFQkXOKMFXYIqRVJnkRF6D6bAuskISPgF3KW0RQoxQeQsmGKui4FxOwXLVwaM_Blj5lJztfehgqGHfOLgxPeyj6VIbrPk57E3ffJkT9B1cJNu46G3jDbSh9ffgpjZtcg-XOQObt8Vm_p6tP5ar-es6s5SIPuPYSiKNZcooVZSEIiawUg5VXJQOE25rK2sjqFJc1IIRopAwdHi8FJwLMgPP59p9DJ8Hl3q988m6tjWdC4ekBWZMcUr_BbEkSErGBzA_gzaGlKKr9T76nYknjZEeFetRsR4V61HxEHi6NB_Knat-8YvTAZBnwA0ejt5Fnax3nXWVj4NhXQX_V_c3J2mI9g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>18308856</pqid></control><display><type>article</type><title>In vivo dissection of the Tat translocation pathway in Escherichia coli</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Ize, Bérengère ; Gérard, Fabien ; Zhang, Ming ; Chanal, Angélique ; Voulhoux, Romé ; Palmer, Tracy ; Filloux, Alain ; Wu, Long-Fei</creator><creatorcontrib>Ize, Bérengère ; Gérard, Fabien ; Zhang, Ming ; Chanal, Angélique ; Voulhoux, Romé ; Palmer, Tracy ; Filloux, Alain ; Wu, Long-Fei</creatorcontrib><description>The bacterial Tat pathway is capable of exporting folded proteins carrying a special twin arginine (RR) signal peptide. By using two
in vivo reporter proteins, we assessed factors that affect Tat pathway transport. We observed that, like the intact RR signal peptide, those with a KR or RK substitution were still capable of mediating the translocation of the folded green fluorescent protein (GFP). However, the translocation efficiency decreased in the order of RR>KR>RK. The KK motif was unable to mediate GFP translocation. The translocation of the RR-GFP fusion required TatA, TatB and TatC proteins. By exploiting the periplasmic bactericidal property of colicin V (ColV), we constructed a translocation-suicide probe, RR-ColV. The translocation of RR-ColV fully inhibited the growth of wild-type
Escherichia coli and those of the Δ
tatD and Δ
tatE mutants. In contrast, the deletion of the
tatC gene blocked RR-ColV in the cytoplasm and this strain exhibited a normal growth phenotype. Interestingly, the growth of Δ
tatA and
tatB mutants was inhibited partially by RR-ColV. Moreover, KR, RK and KK motifs were capable of mediating the ColV translocation with a decreasing RR=KR>RK>KK efficiency. In addition to TatE and TatC proteins, either TatA or TatB was sufficient for the translocation of RR-ColV or KR-ColV. In contrast, TatA plus the conserved N-terminal domain of TatB were required to mediate the killing effect of ColV fused to the less-efficient RK signal peptide. Taken together, these results suggest that a fully efficient Tat pathway transport is determined by the sequence of the signal peptide, the composition of the Tat apparatus, and the intrinsic characteristics of exported proteins.</description><identifier>ISSN: 0022-2836</identifier><identifier>EISSN: 1089-8638</identifier><identifier>DOI: 10.1006/jmbi.2002.5431</identifier><identifier>PMID: 11922668</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Amino Acid Motifs ; colicin IV ; colicin V ; Colicins - genetics ; Colicins - metabolism ; Cytoplasm - metabolism ; Escherichia coli ; Escherichia coli - cytology ; Escherichia coli - genetics ; Escherichia coli - metabolism ; Escherichia coli Proteins - chemistry ; Escherichia coli Proteins - genetics ; Escherichia coli Proteins - metabolism ; GFP ; Green Fluorescent Proteins ; in vivo probes ; Luminescent Proteins - chemistry ; Luminescent Proteins - genetics ; Luminescent Proteins - metabolism ; Mutation - genetics ; Phenotype ; Protein Folding ; Protein Sorting Signals - genetics ; Protein Transport ; Recombinant Fusion Proteins - chemistry ; Recombinant Fusion Proteins - genetics ; Recombinant Fusion Proteins - metabolism ; Tat component ; TatA gene ; tatB gene ; tatC gene ; tatE gene ; twin arginine</subject><ispartof>Journal of molecular biology, 2002-03, Vol.317 (3), p.327-335</ispartof><rights>2002 Elsevier Science Ltd</rights><rights>Copyright 2002 Elsevier Science Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c437t-61c838ac59a992b34057199e0d67be136cfc8fa749967f7533907a4005b76673</citedby><cites>FETCH-LOGICAL-c437t-61c838ac59a992b34057199e0d67be136cfc8fa749967f7533907a4005b76673</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1006/jmbi.2002.5431$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,777,781,3537,27905,27906,45976</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/11922668$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ize, Bérengère</creatorcontrib><creatorcontrib>Gérard, Fabien</creatorcontrib><creatorcontrib>Zhang, Ming</creatorcontrib><creatorcontrib>Chanal, Angélique</creatorcontrib><creatorcontrib>Voulhoux, Romé</creatorcontrib><creatorcontrib>Palmer, Tracy</creatorcontrib><creatorcontrib>Filloux, Alain</creatorcontrib><creatorcontrib>Wu, Long-Fei</creatorcontrib><title>In vivo dissection of the Tat translocation pathway in Escherichia coli</title><title>Journal of molecular biology</title><addtitle>J Mol Biol</addtitle><description>The bacterial Tat pathway is capable of exporting folded proteins carrying a special twin arginine (RR) signal peptide. By using two
in vivo reporter proteins, we assessed factors that affect Tat pathway transport. We observed that, like the intact RR signal peptide, those with a KR or RK substitution were still capable of mediating the translocation of the folded green fluorescent protein (GFP). However, the translocation efficiency decreased in the order of RR>KR>RK. The KK motif was unable to mediate GFP translocation. The translocation of the RR-GFP fusion required TatA, TatB and TatC proteins. By exploiting the periplasmic bactericidal property of colicin V (ColV), we constructed a translocation-suicide probe, RR-ColV. The translocation of RR-ColV fully inhibited the growth of wild-type
Escherichia coli and those of the Δ
tatD and Δ
tatE mutants. In contrast, the deletion of the
tatC gene blocked RR-ColV in the cytoplasm and this strain exhibited a normal growth phenotype. Interestingly, the growth of Δ
tatA and
tatB mutants was inhibited partially by RR-ColV. Moreover, KR, RK and KK motifs were capable of mediating the ColV translocation with a decreasing RR=KR>RK>KK efficiency. In addition to TatE and TatC proteins, either TatA or TatB was sufficient for the translocation of RR-ColV or KR-ColV. In contrast, TatA plus the conserved N-terminal domain of TatB were required to mediate the killing effect of ColV fused to the less-efficient RK signal peptide. Taken together, these results suggest that a fully efficient Tat pathway transport is determined by the sequence of the signal peptide, the composition of the Tat apparatus, and the intrinsic characteristics of exported proteins.</description><subject>Amino Acid Motifs</subject><subject>colicin IV</subject><subject>colicin V</subject><subject>Colicins - genetics</subject><subject>Colicins - metabolism</subject><subject>Cytoplasm - metabolism</subject><subject>Escherichia coli</subject><subject>Escherichia coli - cytology</subject><subject>Escherichia coli - genetics</subject><subject>Escherichia coli - metabolism</subject><subject>Escherichia coli Proteins - chemistry</subject><subject>Escherichia coli Proteins - genetics</subject><subject>Escherichia coli Proteins - metabolism</subject><subject>GFP</subject><subject>Green Fluorescent Proteins</subject><subject>in vivo probes</subject><subject>Luminescent Proteins - chemistry</subject><subject>Luminescent Proteins - genetics</subject><subject>Luminescent Proteins - metabolism</subject><subject>Mutation - genetics</subject><subject>Phenotype</subject><subject>Protein Folding</subject><subject>Protein Sorting Signals - genetics</subject><subject>Protein Transport</subject><subject>Recombinant Fusion Proteins - chemistry</subject><subject>Recombinant Fusion Proteins - genetics</subject><subject>Recombinant Fusion Proteins - metabolism</subject><subject>Tat component</subject><subject>TatA gene</subject><subject>tatB gene</subject><subject>tatC gene</subject><subject>tatE gene</subject><subject>twin arginine</subject><issn>0022-2836</issn><issn>1089-8638</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkM9LwzAYhoMobk6vHiUnb61J8_soY87BwMvuIU1TmtE1M-km--9t3cCTePrg-5735eMB4BGjHCPEX7a70ucFQkXOKMFXYIqRVJnkRF6D6bAuskISPgF3KW0RQoxQeQsmGKui4FxOwXLVwaM_Blj5lJztfehgqGHfOLgxPeyj6VIbrPk57E3ffJkT9B1cJNu46G3jDbSh9ffgpjZtcg-XOQObt8Vm_p6tP5ar-es6s5SIPuPYSiKNZcooVZSEIiawUg5VXJQOE25rK2sjqFJc1IIRopAwdHi8FJwLMgPP59p9DJ8Hl3q988m6tjWdC4ekBWZMcUr_BbEkSErGBzA_gzaGlKKr9T76nYknjZEeFetRsR4V61HxEHi6NB_Knat-8YvTAZBnwA0ejt5Fnax3nXWVj4NhXQX_V_c3J2mI9g</recordid><startdate>20020329</startdate><enddate>20020329</enddate><creator>Ize, Bérengère</creator><creator>Gérard, Fabien</creator><creator>Zhang, Ming</creator><creator>Chanal, Angélique</creator><creator>Voulhoux, Romé</creator><creator>Palmer, Tracy</creator><creator>Filloux, Alain</creator><creator>Wu, Long-Fei</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7TM</scope><scope>C1K</scope><scope>7X8</scope></search><sort><creationdate>20020329</creationdate><title>In vivo dissection of the Tat translocation pathway in Escherichia coli</title><author>Ize, Bérengère ; Gérard, Fabien ; Zhang, Ming ; Chanal, Angélique ; Voulhoux, Romé ; Palmer, Tracy ; Filloux, Alain ; Wu, Long-Fei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c437t-61c838ac59a992b34057199e0d67be136cfc8fa749967f7533907a4005b76673</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Amino Acid Motifs</topic><topic>colicin IV</topic><topic>colicin V</topic><topic>Colicins - genetics</topic><topic>Colicins - metabolism</topic><topic>Cytoplasm - metabolism</topic><topic>Escherichia coli</topic><topic>Escherichia coli - cytology</topic><topic>Escherichia coli - genetics</topic><topic>Escherichia coli - metabolism</topic><topic>Escherichia coli Proteins - chemistry</topic><topic>Escherichia coli Proteins - genetics</topic><topic>Escherichia coli Proteins - metabolism</topic><topic>GFP</topic><topic>Green Fluorescent Proteins</topic><topic>in vivo probes</topic><topic>Luminescent Proteins - chemistry</topic><topic>Luminescent Proteins - genetics</topic><topic>Luminescent Proteins - metabolism</topic><topic>Mutation - genetics</topic><topic>Phenotype</topic><topic>Protein Folding</topic><topic>Protein Sorting Signals - genetics</topic><topic>Protein Transport</topic><topic>Recombinant Fusion Proteins - chemistry</topic><topic>Recombinant Fusion Proteins - genetics</topic><topic>Recombinant Fusion Proteins - metabolism</topic><topic>Tat component</topic><topic>TatA gene</topic><topic>tatB gene</topic><topic>tatC gene</topic><topic>tatE gene</topic><topic>twin arginine</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ize, Bérengère</creatorcontrib><creatorcontrib>Gérard, Fabien</creatorcontrib><creatorcontrib>Zhang, Ming</creatorcontrib><creatorcontrib>Chanal, Angélique</creatorcontrib><creatorcontrib>Voulhoux, Romé</creatorcontrib><creatorcontrib>Palmer, Tracy</creatorcontrib><creatorcontrib>Filloux, Alain</creatorcontrib><creatorcontrib>Wu, Long-Fei</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Nucleic Acids Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of molecular biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ize, Bérengère</au><au>Gérard, Fabien</au><au>Zhang, Ming</au><au>Chanal, Angélique</au><au>Voulhoux, Romé</au><au>Palmer, Tracy</au><au>Filloux, Alain</au><au>Wu, Long-Fei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>In vivo dissection of the Tat translocation pathway in Escherichia coli</atitle><jtitle>Journal of molecular biology</jtitle><addtitle>J Mol Biol</addtitle><date>2002-03-29</date><risdate>2002</risdate><volume>317</volume><issue>3</issue><spage>327</spage><epage>335</epage><pages>327-335</pages><issn>0022-2836</issn><eissn>1089-8638</eissn><abstract>The bacterial Tat pathway is capable of exporting folded proteins carrying a special twin arginine (RR) signal peptide. By using two
in vivo reporter proteins, we assessed factors that affect Tat pathway transport. We observed that, like the intact RR signal peptide, those with a KR or RK substitution were still capable of mediating the translocation of the folded green fluorescent protein (GFP). However, the translocation efficiency decreased in the order of RR>KR>RK. The KK motif was unable to mediate GFP translocation. The translocation of the RR-GFP fusion required TatA, TatB and TatC proteins. By exploiting the periplasmic bactericidal property of colicin V (ColV), we constructed a translocation-suicide probe, RR-ColV. The translocation of RR-ColV fully inhibited the growth of wild-type
Escherichia coli and those of the Δ
tatD and Δ
tatE mutants. In contrast, the deletion of the
tatC gene blocked RR-ColV in the cytoplasm and this strain exhibited a normal growth phenotype. Interestingly, the growth of Δ
tatA and
tatB mutants was inhibited partially by RR-ColV. Moreover, KR, RK and KK motifs were capable of mediating the ColV translocation with a decreasing RR=KR>RK>KK efficiency. In addition to TatE and TatC proteins, either TatA or TatB was sufficient for the translocation of RR-ColV or KR-ColV. In contrast, TatA plus the conserved N-terminal domain of TatB were required to mediate the killing effect of ColV fused to the less-efficient RK signal peptide. Taken together, these results suggest that a fully efficient Tat pathway transport is determined by the sequence of the signal peptide, the composition of the Tat apparatus, and the intrinsic characteristics of exported proteins.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>11922668</pmid><doi>10.1006/jmbi.2002.5431</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-2836 |
ispartof | Journal of molecular biology, 2002-03, Vol.317 (3), p.327-335 |
issn | 0022-2836 1089-8638 |
language | eng |
recordid | cdi_proquest_miscellaneous_71559644 |
source | MEDLINE; Elsevier ScienceDirect Journals |
subjects | Amino Acid Motifs colicin IV colicin V Colicins - genetics Colicins - metabolism Cytoplasm - metabolism Escherichia coli Escherichia coli - cytology Escherichia coli - genetics Escherichia coli - metabolism Escherichia coli Proteins - chemistry Escherichia coli Proteins - genetics Escherichia coli Proteins - metabolism GFP Green Fluorescent Proteins in vivo probes Luminescent Proteins - chemistry Luminescent Proteins - genetics Luminescent Proteins - metabolism Mutation - genetics Phenotype Protein Folding Protein Sorting Signals - genetics Protein Transport Recombinant Fusion Proteins - chemistry Recombinant Fusion Proteins - genetics Recombinant Fusion Proteins - metabolism Tat component TatA gene tatB gene tatC gene tatE gene twin arginine |
title | In vivo dissection of the Tat translocation pathway in Escherichia coli |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T03%3A37%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=In%20vivo%20dissection%20of%20the%20Tat%20translocation%20pathway%20in%20Escherichia%20coli&rft.jtitle=Journal%20of%20molecular%20biology&rft.au=Ize,%20B%C3%A9reng%C3%A8re&rft.date=2002-03-29&rft.volume=317&rft.issue=3&rft.spage=327&rft.epage=335&rft.pages=327-335&rft.issn=0022-2836&rft.eissn=1089-8638&rft_id=info:doi/10.1006/jmbi.2002.5431&rft_dat=%3Cproquest_cross%3E71559644%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=18308856&rft_id=info:pmid/11922668&rft_els_id=S0022283602954318&rfr_iscdi=true |