In vivo dissection of the Tat translocation pathway in Escherichia coli

The bacterial Tat pathway is capable of exporting folded proteins carrying a special twin arginine (RR) signal peptide. By using two in vivo reporter proteins, we assessed factors that affect Tat pathway transport. We observed that, like the intact RR signal peptide, those with a KR or RK substituti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of molecular biology 2002-03, Vol.317 (3), p.327-335
Hauptverfasser: Ize, Bérengère, Gérard, Fabien, Zhang, Ming, Chanal, Angélique, Voulhoux, Romé, Palmer, Tracy, Filloux, Alain, Wu, Long-Fei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 335
container_issue 3
container_start_page 327
container_title Journal of molecular biology
container_volume 317
creator Ize, Bérengère
Gérard, Fabien
Zhang, Ming
Chanal, Angélique
Voulhoux, Romé
Palmer, Tracy
Filloux, Alain
Wu, Long-Fei
description The bacterial Tat pathway is capable of exporting folded proteins carrying a special twin arginine (RR) signal peptide. By using two in vivo reporter proteins, we assessed factors that affect Tat pathway transport. We observed that, like the intact RR signal peptide, those with a KR or RK substitution were still capable of mediating the translocation of the folded green fluorescent protein (GFP). However, the translocation efficiency decreased in the order of RR>KR>RK. The KK motif was unable to mediate GFP translocation. The translocation of the RR-GFP fusion required TatA, TatB and TatC proteins. By exploiting the periplasmic bactericidal property of colicin V (ColV), we constructed a translocation-suicide probe, RR-ColV. The translocation of RR-ColV fully inhibited the growth of wild-type Escherichia coli and those of the Δ tatD and Δ tatE mutants. In contrast, the deletion of the tatC gene blocked RR-ColV in the cytoplasm and this strain exhibited a normal growth phenotype. Interestingly, the growth of Δ tatA and tatB mutants was inhibited partially by RR-ColV. Moreover, KR, RK and KK motifs were capable of mediating the ColV translocation with a decreasing RR=KR>RK>KK efficiency. In addition to TatE and TatC proteins, either TatA or TatB was sufficient for the translocation of RR-ColV or KR-ColV. In contrast, TatA plus the conserved N-terminal domain of TatB were required to mediate the killing effect of ColV fused to the less-efficient RK signal peptide. Taken together, these results suggest that a fully efficient Tat pathway transport is determined by the sequence of the signal peptide, the composition of the Tat apparatus, and the intrinsic characteristics of exported proteins.
doi_str_mv 10.1006/jmbi.2002.5431
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_71559644</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022283602954318</els_id><sourcerecordid>71559644</sourcerecordid><originalsourceid>FETCH-LOGICAL-c437t-61c838ac59a992b34057199e0d67be136cfc8fa749967f7533907a4005b76673</originalsourceid><addsrcrecordid>eNqFkM9LwzAYhoMobk6vHiUnb61J8_soY87BwMvuIU1TmtE1M-km--9t3cCTePrg-5735eMB4BGjHCPEX7a70ucFQkXOKMFXYIqRVJnkRF6D6bAuskISPgF3KW0RQoxQeQsmGKui4FxOwXLVwaM_Blj5lJztfehgqGHfOLgxPeyj6VIbrPk57E3ffJkT9B1cJNu46G3jDbSh9ffgpjZtcg-XOQObt8Vm_p6tP5ar-es6s5SIPuPYSiKNZcooVZSEIiawUg5VXJQOE25rK2sjqFJc1IIRopAwdHi8FJwLMgPP59p9DJ8Hl3q988m6tjWdC4ekBWZMcUr_BbEkSErGBzA_gzaGlKKr9T76nYknjZEeFetRsR4V61HxEHi6NB_Knat-8YvTAZBnwA0ejt5Fnax3nXWVj4NhXQX_V_c3J2mI9g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>18308856</pqid></control><display><type>article</type><title>In vivo dissection of the Tat translocation pathway in Escherichia coli</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Ize, Bérengère ; Gérard, Fabien ; Zhang, Ming ; Chanal, Angélique ; Voulhoux, Romé ; Palmer, Tracy ; Filloux, Alain ; Wu, Long-Fei</creator><creatorcontrib>Ize, Bérengère ; Gérard, Fabien ; Zhang, Ming ; Chanal, Angélique ; Voulhoux, Romé ; Palmer, Tracy ; Filloux, Alain ; Wu, Long-Fei</creatorcontrib><description>The bacterial Tat pathway is capable of exporting folded proteins carrying a special twin arginine (RR) signal peptide. By using two in vivo reporter proteins, we assessed factors that affect Tat pathway transport. We observed that, like the intact RR signal peptide, those with a KR or RK substitution were still capable of mediating the translocation of the folded green fluorescent protein (GFP). However, the translocation efficiency decreased in the order of RR&gt;KR&gt;RK. The KK motif was unable to mediate GFP translocation. The translocation of the RR-GFP fusion required TatA, TatB and TatC proteins. By exploiting the periplasmic bactericidal property of colicin V (ColV), we constructed a translocation-suicide probe, RR-ColV. The translocation of RR-ColV fully inhibited the growth of wild-type Escherichia coli and those of the Δ tatD and Δ tatE mutants. In contrast, the deletion of the tatC gene blocked RR-ColV in the cytoplasm and this strain exhibited a normal growth phenotype. Interestingly, the growth of Δ tatA and tatB mutants was inhibited partially by RR-ColV. Moreover, KR, RK and KK motifs were capable of mediating the ColV translocation with a decreasing RR=KR&gt;RK&gt;KK efficiency. In addition to TatE and TatC proteins, either TatA or TatB was sufficient for the translocation of RR-ColV or KR-ColV. In contrast, TatA plus the conserved N-terminal domain of TatB were required to mediate the killing effect of ColV fused to the less-efficient RK signal peptide. Taken together, these results suggest that a fully efficient Tat pathway transport is determined by the sequence of the signal peptide, the composition of the Tat apparatus, and the intrinsic characteristics of exported proteins.</description><identifier>ISSN: 0022-2836</identifier><identifier>EISSN: 1089-8638</identifier><identifier>DOI: 10.1006/jmbi.2002.5431</identifier><identifier>PMID: 11922668</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Amino Acid Motifs ; colicin IV ; colicin V ; Colicins - genetics ; Colicins - metabolism ; Cytoplasm - metabolism ; Escherichia coli ; Escherichia coli - cytology ; Escherichia coli - genetics ; Escherichia coli - metabolism ; Escherichia coli Proteins - chemistry ; Escherichia coli Proteins - genetics ; Escherichia coli Proteins - metabolism ; GFP ; Green Fluorescent Proteins ; in vivo probes ; Luminescent Proteins - chemistry ; Luminescent Proteins - genetics ; Luminescent Proteins - metabolism ; Mutation - genetics ; Phenotype ; Protein Folding ; Protein Sorting Signals - genetics ; Protein Transport ; Recombinant Fusion Proteins - chemistry ; Recombinant Fusion Proteins - genetics ; Recombinant Fusion Proteins - metabolism ; Tat component ; TatA gene ; tatB gene ; tatC gene ; tatE gene ; twin arginine</subject><ispartof>Journal of molecular biology, 2002-03, Vol.317 (3), p.327-335</ispartof><rights>2002 Elsevier Science Ltd</rights><rights>Copyright 2002 Elsevier Science Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c437t-61c838ac59a992b34057199e0d67be136cfc8fa749967f7533907a4005b76673</citedby><cites>FETCH-LOGICAL-c437t-61c838ac59a992b34057199e0d67be136cfc8fa749967f7533907a4005b76673</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1006/jmbi.2002.5431$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,777,781,3537,27905,27906,45976</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/11922668$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ize, Bérengère</creatorcontrib><creatorcontrib>Gérard, Fabien</creatorcontrib><creatorcontrib>Zhang, Ming</creatorcontrib><creatorcontrib>Chanal, Angélique</creatorcontrib><creatorcontrib>Voulhoux, Romé</creatorcontrib><creatorcontrib>Palmer, Tracy</creatorcontrib><creatorcontrib>Filloux, Alain</creatorcontrib><creatorcontrib>Wu, Long-Fei</creatorcontrib><title>In vivo dissection of the Tat translocation pathway in Escherichia coli</title><title>Journal of molecular biology</title><addtitle>J Mol Biol</addtitle><description>The bacterial Tat pathway is capable of exporting folded proteins carrying a special twin arginine (RR) signal peptide. By using two in vivo reporter proteins, we assessed factors that affect Tat pathway transport. We observed that, like the intact RR signal peptide, those with a KR or RK substitution were still capable of mediating the translocation of the folded green fluorescent protein (GFP). However, the translocation efficiency decreased in the order of RR&gt;KR&gt;RK. The KK motif was unable to mediate GFP translocation. The translocation of the RR-GFP fusion required TatA, TatB and TatC proteins. By exploiting the periplasmic bactericidal property of colicin V (ColV), we constructed a translocation-suicide probe, RR-ColV. The translocation of RR-ColV fully inhibited the growth of wild-type Escherichia coli and those of the Δ tatD and Δ tatE mutants. In contrast, the deletion of the tatC gene blocked RR-ColV in the cytoplasm and this strain exhibited a normal growth phenotype. Interestingly, the growth of Δ tatA and tatB mutants was inhibited partially by RR-ColV. Moreover, KR, RK and KK motifs were capable of mediating the ColV translocation with a decreasing RR=KR&gt;RK&gt;KK efficiency. In addition to TatE and TatC proteins, either TatA or TatB was sufficient for the translocation of RR-ColV or KR-ColV. In contrast, TatA plus the conserved N-terminal domain of TatB were required to mediate the killing effect of ColV fused to the less-efficient RK signal peptide. Taken together, these results suggest that a fully efficient Tat pathway transport is determined by the sequence of the signal peptide, the composition of the Tat apparatus, and the intrinsic characteristics of exported proteins.</description><subject>Amino Acid Motifs</subject><subject>colicin IV</subject><subject>colicin V</subject><subject>Colicins - genetics</subject><subject>Colicins - metabolism</subject><subject>Cytoplasm - metabolism</subject><subject>Escherichia coli</subject><subject>Escherichia coli - cytology</subject><subject>Escherichia coli - genetics</subject><subject>Escherichia coli - metabolism</subject><subject>Escherichia coli Proteins - chemistry</subject><subject>Escherichia coli Proteins - genetics</subject><subject>Escherichia coli Proteins - metabolism</subject><subject>GFP</subject><subject>Green Fluorescent Proteins</subject><subject>in vivo probes</subject><subject>Luminescent Proteins - chemistry</subject><subject>Luminescent Proteins - genetics</subject><subject>Luminescent Proteins - metabolism</subject><subject>Mutation - genetics</subject><subject>Phenotype</subject><subject>Protein Folding</subject><subject>Protein Sorting Signals - genetics</subject><subject>Protein Transport</subject><subject>Recombinant Fusion Proteins - chemistry</subject><subject>Recombinant Fusion Proteins - genetics</subject><subject>Recombinant Fusion Proteins - metabolism</subject><subject>Tat component</subject><subject>TatA gene</subject><subject>tatB gene</subject><subject>tatC gene</subject><subject>tatE gene</subject><subject>twin arginine</subject><issn>0022-2836</issn><issn>1089-8638</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkM9LwzAYhoMobk6vHiUnb61J8_soY87BwMvuIU1TmtE1M-km--9t3cCTePrg-5735eMB4BGjHCPEX7a70ucFQkXOKMFXYIqRVJnkRF6D6bAuskISPgF3KW0RQoxQeQsmGKui4FxOwXLVwaM_Blj5lJztfehgqGHfOLgxPeyj6VIbrPk57E3ffJkT9B1cJNu46G3jDbSh9ffgpjZtcg-XOQObt8Vm_p6tP5ar-es6s5SIPuPYSiKNZcooVZSEIiawUg5VXJQOE25rK2sjqFJc1IIRopAwdHi8FJwLMgPP59p9DJ8Hl3q988m6tjWdC4ekBWZMcUr_BbEkSErGBzA_gzaGlKKr9T76nYknjZEeFetRsR4V61HxEHi6NB_Knat-8YvTAZBnwA0ejt5Fnax3nXWVj4NhXQX_V_c3J2mI9g</recordid><startdate>20020329</startdate><enddate>20020329</enddate><creator>Ize, Bérengère</creator><creator>Gérard, Fabien</creator><creator>Zhang, Ming</creator><creator>Chanal, Angélique</creator><creator>Voulhoux, Romé</creator><creator>Palmer, Tracy</creator><creator>Filloux, Alain</creator><creator>Wu, Long-Fei</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7TM</scope><scope>C1K</scope><scope>7X8</scope></search><sort><creationdate>20020329</creationdate><title>In vivo dissection of the Tat translocation pathway in Escherichia coli</title><author>Ize, Bérengère ; Gérard, Fabien ; Zhang, Ming ; Chanal, Angélique ; Voulhoux, Romé ; Palmer, Tracy ; Filloux, Alain ; Wu, Long-Fei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c437t-61c838ac59a992b34057199e0d67be136cfc8fa749967f7533907a4005b76673</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Amino Acid Motifs</topic><topic>colicin IV</topic><topic>colicin V</topic><topic>Colicins - genetics</topic><topic>Colicins - metabolism</topic><topic>Cytoplasm - metabolism</topic><topic>Escherichia coli</topic><topic>Escherichia coli - cytology</topic><topic>Escherichia coli - genetics</topic><topic>Escherichia coli - metabolism</topic><topic>Escherichia coli Proteins - chemistry</topic><topic>Escherichia coli Proteins - genetics</topic><topic>Escherichia coli Proteins - metabolism</topic><topic>GFP</topic><topic>Green Fluorescent Proteins</topic><topic>in vivo probes</topic><topic>Luminescent Proteins - chemistry</topic><topic>Luminescent Proteins - genetics</topic><topic>Luminescent Proteins - metabolism</topic><topic>Mutation - genetics</topic><topic>Phenotype</topic><topic>Protein Folding</topic><topic>Protein Sorting Signals - genetics</topic><topic>Protein Transport</topic><topic>Recombinant Fusion Proteins - chemistry</topic><topic>Recombinant Fusion Proteins - genetics</topic><topic>Recombinant Fusion Proteins - metabolism</topic><topic>Tat component</topic><topic>TatA gene</topic><topic>tatB gene</topic><topic>tatC gene</topic><topic>tatE gene</topic><topic>twin arginine</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ize, Bérengère</creatorcontrib><creatorcontrib>Gérard, Fabien</creatorcontrib><creatorcontrib>Zhang, Ming</creatorcontrib><creatorcontrib>Chanal, Angélique</creatorcontrib><creatorcontrib>Voulhoux, Romé</creatorcontrib><creatorcontrib>Palmer, Tracy</creatorcontrib><creatorcontrib>Filloux, Alain</creatorcontrib><creatorcontrib>Wu, Long-Fei</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Nucleic Acids Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of molecular biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ize, Bérengère</au><au>Gérard, Fabien</au><au>Zhang, Ming</au><au>Chanal, Angélique</au><au>Voulhoux, Romé</au><au>Palmer, Tracy</au><au>Filloux, Alain</au><au>Wu, Long-Fei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>In vivo dissection of the Tat translocation pathway in Escherichia coli</atitle><jtitle>Journal of molecular biology</jtitle><addtitle>J Mol Biol</addtitle><date>2002-03-29</date><risdate>2002</risdate><volume>317</volume><issue>3</issue><spage>327</spage><epage>335</epage><pages>327-335</pages><issn>0022-2836</issn><eissn>1089-8638</eissn><abstract>The bacterial Tat pathway is capable of exporting folded proteins carrying a special twin arginine (RR) signal peptide. By using two in vivo reporter proteins, we assessed factors that affect Tat pathway transport. We observed that, like the intact RR signal peptide, those with a KR or RK substitution were still capable of mediating the translocation of the folded green fluorescent protein (GFP). However, the translocation efficiency decreased in the order of RR&gt;KR&gt;RK. The KK motif was unable to mediate GFP translocation. The translocation of the RR-GFP fusion required TatA, TatB and TatC proteins. By exploiting the periplasmic bactericidal property of colicin V (ColV), we constructed a translocation-suicide probe, RR-ColV. The translocation of RR-ColV fully inhibited the growth of wild-type Escherichia coli and those of the Δ tatD and Δ tatE mutants. In contrast, the deletion of the tatC gene blocked RR-ColV in the cytoplasm and this strain exhibited a normal growth phenotype. Interestingly, the growth of Δ tatA and tatB mutants was inhibited partially by RR-ColV. Moreover, KR, RK and KK motifs were capable of mediating the ColV translocation with a decreasing RR=KR&gt;RK&gt;KK efficiency. In addition to TatE and TatC proteins, either TatA or TatB was sufficient for the translocation of RR-ColV or KR-ColV. In contrast, TatA plus the conserved N-terminal domain of TatB were required to mediate the killing effect of ColV fused to the less-efficient RK signal peptide. Taken together, these results suggest that a fully efficient Tat pathway transport is determined by the sequence of the signal peptide, the composition of the Tat apparatus, and the intrinsic characteristics of exported proteins.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>11922668</pmid><doi>10.1006/jmbi.2002.5431</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0022-2836
ispartof Journal of molecular biology, 2002-03, Vol.317 (3), p.327-335
issn 0022-2836
1089-8638
language eng
recordid cdi_proquest_miscellaneous_71559644
source MEDLINE; Elsevier ScienceDirect Journals
subjects Amino Acid Motifs
colicin IV
colicin V
Colicins - genetics
Colicins - metabolism
Cytoplasm - metabolism
Escherichia coli
Escherichia coli - cytology
Escherichia coli - genetics
Escherichia coli - metabolism
Escherichia coli Proteins - chemistry
Escherichia coli Proteins - genetics
Escherichia coli Proteins - metabolism
GFP
Green Fluorescent Proteins
in vivo probes
Luminescent Proteins - chemistry
Luminescent Proteins - genetics
Luminescent Proteins - metabolism
Mutation - genetics
Phenotype
Protein Folding
Protein Sorting Signals - genetics
Protein Transport
Recombinant Fusion Proteins - chemistry
Recombinant Fusion Proteins - genetics
Recombinant Fusion Proteins - metabolism
Tat component
TatA gene
tatB gene
tatC gene
tatE gene
twin arginine
title In vivo dissection of the Tat translocation pathway in Escherichia coli
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T03%3A37%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=In%20vivo%20dissection%20of%20the%20Tat%20translocation%20pathway%20in%20Escherichia%20coli&rft.jtitle=Journal%20of%20molecular%20biology&rft.au=Ize,%20B%C3%A9reng%C3%A8re&rft.date=2002-03-29&rft.volume=317&rft.issue=3&rft.spage=327&rft.epage=335&rft.pages=327-335&rft.issn=0022-2836&rft.eissn=1089-8638&rft_id=info:doi/10.1006/jmbi.2002.5431&rft_dat=%3Cproquest_cross%3E71559644%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=18308856&rft_id=info:pmid/11922668&rft_els_id=S0022283602954318&rfr_iscdi=true