Geometrically structured implants for cranial reconstruction made of biodegradable polyesters and calcium phosphate/calcium carbonate
The aim of this study was the development of a processing pathway for manufacturing of biodegradable skull implants with individual geometry. The implants on the basis of polylactide and calcium phosphate/calcium carbonate were prepared by a combination of hot pressing and gas foaming. On the inside...
Gespeichert in:
Veröffentlicht in: | Biomaterials 2004-03, Vol.25 (7), p.1239-1247 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1247 |
---|---|
container_issue | 7 |
container_start_page | 1239 |
container_title | Biomaterials |
container_volume | 25 |
creator | Schiller, Carsten Rasche, Christian Wehmöller, Michael Beckmann, Felix Eufinger, Harald Epple, Matthias Weihe, Stephan |
description | The aim of this study was the development of a processing pathway for manufacturing of biodegradable skull implants with individual geometry. The implants on the basis of polylactide and calcium phosphate/calcium carbonate were prepared by a combination of hot pressing and gas foaming. On the inside, the implant consists of a macroporous and faster degradable material (poly(
d,
l-lactide)+CaCO
3) to allow the ingrowth of bone cells. The pore size is in the range of 200–400
μm. On the outside, the implant consists of a compact and slower biodegradable material (poly(
l-lactide) and calcium phosphate) to ensure mechanical stability and protection. To overcome problems like inflammatory reactions caused by acidic degradation products of polylactide, the polyester was combined with basic filling materials (calcium salts). The filler neutralises the lactic acid produced during polymer degradation and increases the bioactivity of the material. The stabilised pH was demonstrated by long-term in vitro pH studies. Over a time period of 250
d in demineralised water, the pH was in the physiological range. The in vitro biocompatibility was shown by cell cultures with human osteoblasts. A good proliferation of the cells was observed over the whole test period of 4 weeks. |
doi_str_mv | 10.1016/j.biomaterials.2003.08.047 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_71553608</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0142961203006744</els_id><sourcerecordid>28198055</sourcerecordid><originalsourceid>FETCH-LOGICAL-c504t-2be8b7e805bff1fd7f0ab7f02bbfda64e8e61c1bad75058a539cdda2cf7a64103</originalsourceid><addsrcrecordid>eNqNkc9O3DAQxq2qVVm2fYXK4tBbgp3EidMbghaQkLi0Z8t_xsWrJE7tBGkfgPfuoN2q3OBiyzO_mfnGHyFnnJWc8fZ8V5oQR71ACnrIZcVYXTJZsqZ7RzZcdrIQPRPvyYbxpir6llcn5DTnHcM3a6qP5IQ3bVOLXm7I0zXEEZYUrB6GPc1LWu2yJnA0jPOgpyVTHxO1SU84jCawcTpAIU501A5o9BT1OPidtNNmADrHYQ8Z5WWqJ0exsw3rSOeHmOcHlH3-L2J1MnHCyCfyweMq8Pl4b8mvH99_Xt4Ud_fXt5cXd4UVrFmKyoA0HUgmjPfcu84zbfCojPFOtw1IaLnlRrtOMCG1qHvrnK6s7zDLWb0lXw995xT_rKhRjSFbGHBRiGtWHReibpl8Fawk7yVybwSx65Z8O4A2xZwTeDWnMOq0V5ypZ1vVTr20VT3bqphUaCsWfzlOWc0I7n_p0UcErg4A4O89Bkgq2wCTBRfQskW5GN4y5y9n8MAk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>28198055</pqid></control><display><type>article</type><title>Geometrically structured implants for cranial reconstruction made of biodegradable polyesters and calcium phosphate/calcium carbonate</title><source>MEDLINE</source><source>Access via ScienceDirect (Elsevier)</source><creator>Schiller, Carsten ; Rasche, Christian ; Wehmöller, Michael ; Beckmann, Felix ; Eufinger, Harald ; Epple, Matthias ; Weihe, Stephan</creator><creatorcontrib>Schiller, Carsten ; Rasche, Christian ; Wehmöller, Michael ; Beckmann, Felix ; Eufinger, Harald ; Epple, Matthias ; Weihe, Stephan</creatorcontrib><description>The aim of this study was the development of a processing pathway for manufacturing of biodegradable skull implants with individual geometry. The implants on the basis of polylactide and calcium phosphate/calcium carbonate were prepared by a combination of hot pressing and gas foaming. On the inside, the implant consists of a macroporous and faster degradable material (poly(
d,
l-lactide)+CaCO
3) to allow the ingrowth of bone cells. The pore size is in the range of 200–400
μm. On the outside, the implant consists of a compact and slower biodegradable material (poly(
l-lactide) and calcium phosphate) to ensure mechanical stability and protection. To overcome problems like inflammatory reactions caused by acidic degradation products of polylactide, the polyester was combined with basic filling materials (calcium salts). The filler neutralises the lactic acid produced during polymer degradation and increases the bioactivity of the material. The stabilised pH was demonstrated by long-term in vitro pH studies. Over a time period of 250
d in demineralised water, the pH was in the physiological range. The in vitro biocompatibility was shown by cell cultures with human osteoblasts. A good proliferation of the cells was observed over the whole test period of 4 weeks.</description><identifier>ISSN: 0142-9612</identifier><identifier>EISSN: 1878-5905</identifier><identifier>DOI: 10.1016/j.biomaterials.2003.08.047</identifier><identifier>PMID: 14643598</identifier><language>eng</language><publisher>Netherlands: Elsevier Ltd</publisher><subject>Absorbable Implants ; Bone Substitutes - chemical synthesis ; Bone Substitutes - chemistry ; Calcium Carbonate - chemistry ; Calcium phosphate ; Calcium Phosphates - chemistry ; Cell Division - physiology ; Cells, Cultured ; Elasticity ; Equipment Failure Analysis ; Functionally graded materials ; Head surgery ; Humans ; Hydrogen-Ion Concentration ; Implants ; Lactic Acid - chemistry ; Manufactured Materials - analysis ; Materials Testing ; Osteoblasts - cytology ; Polyesters - chemistry ; Polylactic acid ; Polymers - chemistry ; Prosthesis Design ; Reconstructive Surgical Procedures - instrumentation ; Reconstructive Surgical Procedures - methods</subject><ispartof>Biomaterials, 2004-03, Vol.25 (7), p.1239-1247</ispartof><rights>2003 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c504t-2be8b7e805bff1fd7f0ab7f02bbfda64e8e61c1bad75058a539cdda2cf7a64103</citedby><cites>FETCH-LOGICAL-c504t-2be8b7e805bff1fd7f0ab7f02bbfda64e8e61c1bad75058a539cdda2cf7a64103</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.biomaterials.2003.08.047$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/14643598$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Schiller, Carsten</creatorcontrib><creatorcontrib>Rasche, Christian</creatorcontrib><creatorcontrib>Wehmöller, Michael</creatorcontrib><creatorcontrib>Beckmann, Felix</creatorcontrib><creatorcontrib>Eufinger, Harald</creatorcontrib><creatorcontrib>Epple, Matthias</creatorcontrib><creatorcontrib>Weihe, Stephan</creatorcontrib><title>Geometrically structured implants for cranial reconstruction made of biodegradable polyesters and calcium phosphate/calcium carbonate</title><title>Biomaterials</title><addtitle>Biomaterials</addtitle><description>The aim of this study was the development of a processing pathway for manufacturing of biodegradable skull implants with individual geometry. The implants on the basis of polylactide and calcium phosphate/calcium carbonate were prepared by a combination of hot pressing and gas foaming. On the inside, the implant consists of a macroporous and faster degradable material (poly(
d,
l-lactide)+CaCO
3) to allow the ingrowth of bone cells. The pore size is in the range of 200–400
μm. On the outside, the implant consists of a compact and slower biodegradable material (poly(
l-lactide) and calcium phosphate) to ensure mechanical stability and protection. To overcome problems like inflammatory reactions caused by acidic degradation products of polylactide, the polyester was combined with basic filling materials (calcium salts). The filler neutralises the lactic acid produced during polymer degradation and increases the bioactivity of the material. The stabilised pH was demonstrated by long-term in vitro pH studies. Over a time period of 250
d in demineralised water, the pH was in the physiological range. The in vitro biocompatibility was shown by cell cultures with human osteoblasts. A good proliferation of the cells was observed over the whole test period of 4 weeks.</description><subject>Absorbable Implants</subject><subject>Bone Substitutes - chemical synthesis</subject><subject>Bone Substitutes - chemistry</subject><subject>Calcium Carbonate - chemistry</subject><subject>Calcium phosphate</subject><subject>Calcium Phosphates - chemistry</subject><subject>Cell Division - physiology</subject><subject>Cells, Cultured</subject><subject>Elasticity</subject><subject>Equipment Failure Analysis</subject><subject>Functionally graded materials</subject><subject>Head surgery</subject><subject>Humans</subject><subject>Hydrogen-Ion Concentration</subject><subject>Implants</subject><subject>Lactic Acid - chemistry</subject><subject>Manufactured Materials - analysis</subject><subject>Materials Testing</subject><subject>Osteoblasts - cytology</subject><subject>Polyesters - chemistry</subject><subject>Polylactic acid</subject><subject>Polymers - chemistry</subject><subject>Prosthesis Design</subject><subject>Reconstructive Surgical Procedures - instrumentation</subject><subject>Reconstructive Surgical Procedures - methods</subject><issn>0142-9612</issn><issn>1878-5905</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkc9O3DAQxq2qVVm2fYXK4tBbgp3EidMbghaQkLi0Z8t_xsWrJE7tBGkfgPfuoN2q3OBiyzO_mfnGHyFnnJWc8fZ8V5oQR71ACnrIZcVYXTJZsqZ7RzZcdrIQPRPvyYbxpir6llcn5DTnHcM3a6qP5IQ3bVOLXm7I0zXEEZYUrB6GPc1LWu2yJnA0jPOgpyVTHxO1SU84jCawcTpAIU501A5o9BT1OPidtNNmADrHYQ8Z5WWqJ0exsw3rSOeHmOcHlH3-L2J1MnHCyCfyweMq8Pl4b8mvH99_Xt4Ud_fXt5cXd4UVrFmKyoA0HUgmjPfcu84zbfCojPFOtw1IaLnlRrtOMCG1qHvrnK6s7zDLWb0lXw995xT_rKhRjSFbGHBRiGtWHReibpl8Fawk7yVybwSx65Z8O4A2xZwTeDWnMOq0V5ypZ1vVTr20VT3bqphUaCsWfzlOWc0I7n_p0UcErg4A4O89Bkgq2wCTBRfQskW5GN4y5y9n8MAk</recordid><startdate>20040301</startdate><enddate>20040301</enddate><creator>Schiller, Carsten</creator><creator>Rasche, Christian</creator><creator>Wehmöller, Michael</creator><creator>Beckmann, Felix</creator><creator>Eufinger, Harald</creator><creator>Epple, Matthias</creator><creator>Weihe, Stephan</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>7QQ</scope><scope>JG9</scope><scope>7X8</scope></search><sort><creationdate>20040301</creationdate><title>Geometrically structured implants for cranial reconstruction made of biodegradable polyesters and calcium phosphate/calcium carbonate</title><author>Schiller, Carsten ; Rasche, Christian ; Wehmöller, Michael ; Beckmann, Felix ; Eufinger, Harald ; Epple, Matthias ; Weihe, Stephan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c504t-2be8b7e805bff1fd7f0ab7f02bbfda64e8e61c1bad75058a539cdda2cf7a64103</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Absorbable Implants</topic><topic>Bone Substitutes - chemical synthesis</topic><topic>Bone Substitutes - chemistry</topic><topic>Calcium Carbonate - chemistry</topic><topic>Calcium phosphate</topic><topic>Calcium Phosphates - chemistry</topic><topic>Cell Division - physiology</topic><topic>Cells, Cultured</topic><topic>Elasticity</topic><topic>Equipment Failure Analysis</topic><topic>Functionally graded materials</topic><topic>Head surgery</topic><topic>Humans</topic><topic>Hydrogen-Ion Concentration</topic><topic>Implants</topic><topic>Lactic Acid - chemistry</topic><topic>Manufactured Materials - analysis</topic><topic>Materials Testing</topic><topic>Osteoblasts - cytology</topic><topic>Polyesters - chemistry</topic><topic>Polylactic acid</topic><topic>Polymers - chemistry</topic><topic>Prosthesis Design</topic><topic>Reconstructive Surgical Procedures - instrumentation</topic><topic>Reconstructive Surgical Procedures - methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Schiller, Carsten</creatorcontrib><creatorcontrib>Rasche, Christian</creatorcontrib><creatorcontrib>Wehmöller, Michael</creatorcontrib><creatorcontrib>Beckmann, Felix</creatorcontrib><creatorcontrib>Eufinger, Harald</creatorcontrib><creatorcontrib>Epple, Matthias</creatorcontrib><creatorcontrib>Weihe, Stephan</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Ceramic Abstracts</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><jtitle>Biomaterials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Schiller, Carsten</au><au>Rasche, Christian</au><au>Wehmöller, Michael</au><au>Beckmann, Felix</au><au>Eufinger, Harald</au><au>Epple, Matthias</au><au>Weihe, Stephan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Geometrically structured implants for cranial reconstruction made of biodegradable polyesters and calcium phosphate/calcium carbonate</atitle><jtitle>Biomaterials</jtitle><addtitle>Biomaterials</addtitle><date>2004-03-01</date><risdate>2004</risdate><volume>25</volume><issue>7</issue><spage>1239</spage><epage>1247</epage><pages>1239-1247</pages><issn>0142-9612</issn><eissn>1878-5905</eissn><abstract>The aim of this study was the development of a processing pathway for manufacturing of biodegradable skull implants with individual geometry. The implants on the basis of polylactide and calcium phosphate/calcium carbonate were prepared by a combination of hot pressing and gas foaming. On the inside, the implant consists of a macroporous and faster degradable material (poly(
d,
l-lactide)+CaCO
3) to allow the ingrowth of bone cells. The pore size is in the range of 200–400
μm. On the outside, the implant consists of a compact and slower biodegradable material (poly(
l-lactide) and calcium phosphate) to ensure mechanical stability and protection. To overcome problems like inflammatory reactions caused by acidic degradation products of polylactide, the polyester was combined with basic filling materials (calcium salts). The filler neutralises the lactic acid produced during polymer degradation and increases the bioactivity of the material. The stabilised pH was demonstrated by long-term in vitro pH studies. Over a time period of 250
d in demineralised water, the pH was in the physiological range. The in vitro biocompatibility was shown by cell cultures with human osteoblasts. A good proliferation of the cells was observed over the whole test period of 4 weeks.</abstract><cop>Netherlands</cop><pub>Elsevier Ltd</pub><pmid>14643598</pmid><doi>10.1016/j.biomaterials.2003.08.047</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0142-9612 |
ispartof | Biomaterials, 2004-03, Vol.25 (7), p.1239-1247 |
issn | 0142-9612 1878-5905 |
language | eng |
recordid | cdi_proquest_miscellaneous_71553608 |
source | MEDLINE; Access via ScienceDirect (Elsevier) |
subjects | Absorbable Implants Bone Substitutes - chemical synthesis Bone Substitutes - chemistry Calcium Carbonate - chemistry Calcium phosphate Calcium Phosphates - chemistry Cell Division - physiology Cells, Cultured Elasticity Equipment Failure Analysis Functionally graded materials Head surgery Humans Hydrogen-Ion Concentration Implants Lactic Acid - chemistry Manufactured Materials - analysis Materials Testing Osteoblasts - cytology Polyesters - chemistry Polylactic acid Polymers - chemistry Prosthesis Design Reconstructive Surgical Procedures - instrumentation Reconstructive Surgical Procedures - methods |
title | Geometrically structured implants for cranial reconstruction made of biodegradable polyesters and calcium phosphate/calcium carbonate |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T03%3A04%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Geometrically%20structured%20implants%20for%20cranial%20reconstruction%20made%20of%20biodegradable%20polyesters%20and%20calcium%20phosphate/calcium%20carbonate&rft.jtitle=Biomaterials&rft.au=Schiller,%20Carsten&rft.date=2004-03-01&rft.volume=25&rft.issue=7&rft.spage=1239&rft.epage=1247&rft.pages=1239-1247&rft.issn=0142-9612&rft.eissn=1878-5905&rft_id=info:doi/10.1016/j.biomaterials.2003.08.047&rft_dat=%3Cproquest_cross%3E28198055%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=28198055&rft_id=info:pmid/14643598&rft_els_id=S0142961203006744&rfr_iscdi=true |