Geometrically structured implants for cranial reconstruction made of biodegradable polyesters and calcium phosphate/calcium carbonate

The aim of this study was the development of a processing pathway for manufacturing of biodegradable skull implants with individual geometry. The implants on the basis of polylactide and calcium phosphate/calcium carbonate were prepared by a combination of hot pressing and gas foaming. On the inside...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biomaterials 2004-03, Vol.25 (7), p.1239-1247
Hauptverfasser: Schiller, Carsten, Rasche, Christian, Wehmöller, Michael, Beckmann, Felix, Eufinger, Harald, Epple, Matthias, Weihe, Stephan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1247
container_issue 7
container_start_page 1239
container_title Biomaterials
container_volume 25
creator Schiller, Carsten
Rasche, Christian
Wehmöller, Michael
Beckmann, Felix
Eufinger, Harald
Epple, Matthias
Weihe, Stephan
description The aim of this study was the development of a processing pathway for manufacturing of biodegradable skull implants with individual geometry. The implants on the basis of polylactide and calcium phosphate/calcium carbonate were prepared by a combination of hot pressing and gas foaming. On the inside, the implant consists of a macroporous and faster degradable material (poly( d, l-lactide)+CaCO 3) to allow the ingrowth of bone cells. The pore size is in the range of 200–400 μm. On the outside, the implant consists of a compact and slower biodegradable material (poly( l-lactide) and calcium phosphate) to ensure mechanical stability and protection. To overcome problems like inflammatory reactions caused by acidic degradation products of polylactide, the polyester was combined with basic filling materials (calcium salts). The filler neutralises the lactic acid produced during polymer degradation and increases the bioactivity of the material. The stabilised pH was demonstrated by long-term in vitro pH studies. Over a time period of 250 d in demineralised water, the pH was in the physiological range. The in vitro biocompatibility was shown by cell cultures with human osteoblasts. A good proliferation of the cells was observed over the whole test period of 4 weeks.
doi_str_mv 10.1016/j.biomaterials.2003.08.047
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_71553608</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0142961203006744</els_id><sourcerecordid>28198055</sourcerecordid><originalsourceid>FETCH-LOGICAL-c504t-2be8b7e805bff1fd7f0ab7f02bbfda64e8e61c1bad75058a539cdda2cf7a64103</originalsourceid><addsrcrecordid>eNqNkc9O3DAQxq2qVVm2fYXK4tBbgp3EidMbghaQkLi0Z8t_xsWrJE7tBGkfgPfuoN2q3OBiyzO_mfnGHyFnnJWc8fZ8V5oQR71ACnrIZcVYXTJZsqZ7RzZcdrIQPRPvyYbxpir6llcn5DTnHcM3a6qP5IQ3bVOLXm7I0zXEEZYUrB6GPc1LWu2yJnA0jPOgpyVTHxO1SU84jCawcTpAIU501A5o9BT1OPidtNNmADrHYQ8Z5WWqJ0exsw3rSOeHmOcHlH3-L2J1MnHCyCfyweMq8Pl4b8mvH99_Xt4Ud_fXt5cXd4UVrFmKyoA0HUgmjPfcu84zbfCojPFOtw1IaLnlRrtOMCG1qHvrnK6s7zDLWb0lXw995xT_rKhRjSFbGHBRiGtWHReibpl8Fawk7yVybwSx65Z8O4A2xZwTeDWnMOq0V5ypZ1vVTr20VT3bqphUaCsWfzlOWc0I7n_p0UcErg4A4O89Bkgq2wCTBRfQskW5GN4y5y9n8MAk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>28198055</pqid></control><display><type>article</type><title>Geometrically structured implants for cranial reconstruction made of biodegradable polyesters and calcium phosphate/calcium carbonate</title><source>MEDLINE</source><source>Access via ScienceDirect (Elsevier)</source><creator>Schiller, Carsten ; Rasche, Christian ; Wehmöller, Michael ; Beckmann, Felix ; Eufinger, Harald ; Epple, Matthias ; Weihe, Stephan</creator><creatorcontrib>Schiller, Carsten ; Rasche, Christian ; Wehmöller, Michael ; Beckmann, Felix ; Eufinger, Harald ; Epple, Matthias ; Weihe, Stephan</creatorcontrib><description>The aim of this study was the development of a processing pathway for manufacturing of biodegradable skull implants with individual geometry. The implants on the basis of polylactide and calcium phosphate/calcium carbonate were prepared by a combination of hot pressing and gas foaming. On the inside, the implant consists of a macroporous and faster degradable material (poly( d, l-lactide)+CaCO 3) to allow the ingrowth of bone cells. The pore size is in the range of 200–400 μm. On the outside, the implant consists of a compact and slower biodegradable material (poly( l-lactide) and calcium phosphate) to ensure mechanical stability and protection. To overcome problems like inflammatory reactions caused by acidic degradation products of polylactide, the polyester was combined with basic filling materials (calcium salts). The filler neutralises the lactic acid produced during polymer degradation and increases the bioactivity of the material. The stabilised pH was demonstrated by long-term in vitro pH studies. Over a time period of 250 d in demineralised water, the pH was in the physiological range. The in vitro biocompatibility was shown by cell cultures with human osteoblasts. A good proliferation of the cells was observed over the whole test period of 4 weeks.</description><identifier>ISSN: 0142-9612</identifier><identifier>EISSN: 1878-5905</identifier><identifier>DOI: 10.1016/j.biomaterials.2003.08.047</identifier><identifier>PMID: 14643598</identifier><language>eng</language><publisher>Netherlands: Elsevier Ltd</publisher><subject>Absorbable Implants ; Bone Substitutes - chemical synthesis ; Bone Substitutes - chemistry ; Calcium Carbonate - chemistry ; Calcium phosphate ; Calcium Phosphates - chemistry ; Cell Division - physiology ; Cells, Cultured ; Elasticity ; Equipment Failure Analysis ; Functionally graded materials ; Head surgery ; Humans ; Hydrogen-Ion Concentration ; Implants ; Lactic Acid - chemistry ; Manufactured Materials - analysis ; Materials Testing ; Osteoblasts - cytology ; Polyesters - chemistry ; Polylactic acid ; Polymers - chemistry ; Prosthesis Design ; Reconstructive Surgical Procedures - instrumentation ; Reconstructive Surgical Procedures - methods</subject><ispartof>Biomaterials, 2004-03, Vol.25 (7), p.1239-1247</ispartof><rights>2003 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c504t-2be8b7e805bff1fd7f0ab7f02bbfda64e8e61c1bad75058a539cdda2cf7a64103</citedby><cites>FETCH-LOGICAL-c504t-2be8b7e805bff1fd7f0ab7f02bbfda64e8e61c1bad75058a539cdda2cf7a64103</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.biomaterials.2003.08.047$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/14643598$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Schiller, Carsten</creatorcontrib><creatorcontrib>Rasche, Christian</creatorcontrib><creatorcontrib>Wehmöller, Michael</creatorcontrib><creatorcontrib>Beckmann, Felix</creatorcontrib><creatorcontrib>Eufinger, Harald</creatorcontrib><creatorcontrib>Epple, Matthias</creatorcontrib><creatorcontrib>Weihe, Stephan</creatorcontrib><title>Geometrically structured implants for cranial reconstruction made of biodegradable polyesters and calcium phosphate/calcium carbonate</title><title>Biomaterials</title><addtitle>Biomaterials</addtitle><description>The aim of this study was the development of a processing pathway for manufacturing of biodegradable skull implants with individual geometry. The implants on the basis of polylactide and calcium phosphate/calcium carbonate were prepared by a combination of hot pressing and gas foaming. On the inside, the implant consists of a macroporous and faster degradable material (poly( d, l-lactide)+CaCO 3) to allow the ingrowth of bone cells. The pore size is in the range of 200–400 μm. On the outside, the implant consists of a compact and slower biodegradable material (poly( l-lactide) and calcium phosphate) to ensure mechanical stability and protection. To overcome problems like inflammatory reactions caused by acidic degradation products of polylactide, the polyester was combined with basic filling materials (calcium salts). The filler neutralises the lactic acid produced during polymer degradation and increases the bioactivity of the material. The stabilised pH was demonstrated by long-term in vitro pH studies. Over a time period of 250 d in demineralised water, the pH was in the physiological range. The in vitro biocompatibility was shown by cell cultures with human osteoblasts. A good proliferation of the cells was observed over the whole test period of 4 weeks.</description><subject>Absorbable Implants</subject><subject>Bone Substitutes - chemical synthesis</subject><subject>Bone Substitutes - chemistry</subject><subject>Calcium Carbonate - chemistry</subject><subject>Calcium phosphate</subject><subject>Calcium Phosphates - chemistry</subject><subject>Cell Division - physiology</subject><subject>Cells, Cultured</subject><subject>Elasticity</subject><subject>Equipment Failure Analysis</subject><subject>Functionally graded materials</subject><subject>Head surgery</subject><subject>Humans</subject><subject>Hydrogen-Ion Concentration</subject><subject>Implants</subject><subject>Lactic Acid - chemistry</subject><subject>Manufactured Materials - analysis</subject><subject>Materials Testing</subject><subject>Osteoblasts - cytology</subject><subject>Polyesters - chemistry</subject><subject>Polylactic acid</subject><subject>Polymers - chemistry</subject><subject>Prosthesis Design</subject><subject>Reconstructive Surgical Procedures - instrumentation</subject><subject>Reconstructive Surgical Procedures - methods</subject><issn>0142-9612</issn><issn>1878-5905</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkc9O3DAQxq2qVVm2fYXK4tBbgp3EidMbghaQkLi0Z8t_xsWrJE7tBGkfgPfuoN2q3OBiyzO_mfnGHyFnnJWc8fZ8V5oQR71ACnrIZcVYXTJZsqZ7RzZcdrIQPRPvyYbxpir6llcn5DTnHcM3a6qP5IQ3bVOLXm7I0zXEEZYUrB6GPc1LWu2yJnA0jPOgpyVTHxO1SU84jCawcTpAIU501A5o9BT1OPidtNNmADrHYQ8Z5WWqJ0exsw3rSOeHmOcHlH3-L2J1MnHCyCfyweMq8Pl4b8mvH99_Xt4Ud_fXt5cXd4UVrFmKyoA0HUgmjPfcu84zbfCojPFOtw1IaLnlRrtOMCG1qHvrnK6s7zDLWb0lXw995xT_rKhRjSFbGHBRiGtWHReibpl8Fawk7yVybwSx65Z8O4A2xZwTeDWnMOq0V5ypZ1vVTr20VT3bqphUaCsWfzlOWc0I7n_p0UcErg4A4O89Bkgq2wCTBRfQskW5GN4y5y9n8MAk</recordid><startdate>20040301</startdate><enddate>20040301</enddate><creator>Schiller, Carsten</creator><creator>Rasche, Christian</creator><creator>Wehmöller, Michael</creator><creator>Beckmann, Felix</creator><creator>Eufinger, Harald</creator><creator>Epple, Matthias</creator><creator>Weihe, Stephan</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>7QQ</scope><scope>JG9</scope><scope>7X8</scope></search><sort><creationdate>20040301</creationdate><title>Geometrically structured implants for cranial reconstruction made of biodegradable polyesters and calcium phosphate/calcium carbonate</title><author>Schiller, Carsten ; Rasche, Christian ; Wehmöller, Michael ; Beckmann, Felix ; Eufinger, Harald ; Epple, Matthias ; Weihe, Stephan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c504t-2be8b7e805bff1fd7f0ab7f02bbfda64e8e61c1bad75058a539cdda2cf7a64103</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Absorbable Implants</topic><topic>Bone Substitutes - chemical synthesis</topic><topic>Bone Substitutes - chemistry</topic><topic>Calcium Carbonate - chemistry</topic><topic>Calcium phosphate</topic><topic>Calcium Phosphates - chemistry</topic><topic>Cell Division - physiology</topic><topic>Cells, Cultured</topic><topic>Elasticity</topic><topic>Equipment Failure Analysis</topic><topic>Functionally graded materials</topic><topic>Head surgery</topic><topic>Humans</topic><topic>Hydrogen-Ion Concentration</topic><topic>Implants</topic><topic>Lactic Acid - chemistry</topic><topic>Manufactured Materials - analysis</topic><topic>Materials Testing</topic><topic>Osteoblasts - cytology</topic><topic>Polyesters - chemistry</topic><topic>Polylactic acid</topic><topic>Polymers - chemistry</topic><topic>Prosthesis Design</topic><topic>Reconstructive Surgical Procedures - instrumentation</topic><topic>Reconstructive Surgical Procedures - methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Schiller, Carsten</creatorcontrib><creatorcontrib>Rasche, Christian</creatorcontrib><creatorcontrib>Wehmöller, Michael</creatorcontrib><creatorcontrib>Beckmann, Felix</creatorcontrib><creatorcontrib>Eufinger, Harald</creatorcontrib><creatorcontrib>Epple, Matthias</creatorcontrib><creatorcontrib>Weihe, Stephan</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Ceramic Abstracts</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><jtitle>Biomaterials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Schiller, Carsten</au><au>Rasche, Christian</au><au>Wehmöller, Michael</au><au>Beckmann, Felix</au><au>Eufinger, Harald</au><au>Epple, Matthias</au><au>Weihe, Stephan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Geometrically structured implants for cranial reconstruction made of biodegradable polyesters and calcium phosphate/calcium carbonate</atitle><jtitle>Biomaterials</jtitle><addtitle>Biomaterials</addtitle><date>2004-03-01</date><risdate>2004</risdate><volume>25</volume><issue>7</issue><spage>1239</spage><epage>1247</epage><pages>1239-1247</pages><issn>0142-9612</issn><eissn>1878-5905</eissn><abstract>The aim of this study was the development of a processing pathway for manufacturing of biodegradable skull implants with individual geometry. The implants on the basis of polylactide and calcium phosphate/calcium carbonate were prepared by a combination of hot pressing and gas foaming. On the inside, the implant consists of a macroporous and faster degradable material (poly( d, l-lactide)+CaCO 3) to allow the ingrowth of bone cells. The pore size is in the range of 200–400 μm. On the outside, the implant consists of a compact and slower biodegradable material (poly( l-lactide) and calcium phosphate) to ensure mechanical stability and protection. To overcome problems like inflammatory reactions caused by acidic degradation products of polylactide, the polyester was combined with basic filling materials (calcium salts). The filler neutralises the lactic acid produced during polymer degradation and increases the bioactivity of the material. The stabilised pH was demonstrated by long-term in vitro pH studies. Over a time period of 250 d in demineralised water, the pH was in the physiological range. The in vitro biocompatibility was shown by cell cultures with human osteoblasts. A good proliferation of the cells was observed over the whole test period of 4 weeks.</abstract><cop>Netherlands</cop><pub>Elsevier Ltd</pub><pmid>14643598</pmid><doi>10.1016/j.biomaterials.2003.08.047</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0142-9612
ispartof Biomaterials, 2004-03, Vol.25 (7), p.1239-1247
issn 0142-9612
1878-5905
language eng
recordid cdi_proquest_miscellaneous_71553608
source MEDLINE; Access via ScienceDirect (Elsevier)
subjects Absorbable Implants
Bone Substitutes - chemical synthesis
Bone Substitutes - chemistry
Calcium Carbonate - chemistry
Calcium phosphate
Calcium Phosphates - chemistry
Cell Division - physiology
Cells, Cultured
Elasticity
Equipment Failure Analysis
Functionally graded materials
Head surgery
Humans
Hydrogen-Ion Concentration
Implants
Lactic Acid - chemistry
Manufactured Materials - analysis
Materials Testing
Osteoblasts - cytology
Polyesters - chemistry
Polylactic acid
Polymers - chemistry
Prosthesis Design
Reconstructive Surgical Procedures - instrumentation
Reconstructive Surgical Procedures - methods
title Geometrically structured implants for cranial reconstruction made of biodegradable polyesters and calcium phosphate/calcium carbonate
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T03%3A04%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Geometrically%20structured%20implants%20for%20cranial%20reconstruction%20made%20of%20biodegradable%20polyesters%20and%20calcium%20phosphate/calcium%20carbonate&rft.jtitle=Biomaterials&rft.au=Schiller,%20Carsten&rft.date=2004-03-01&rft.volume=25&rft.issue=7&rft.spage=1239&rft.epage=1247&rft.pages=1239-1247&rft.issn=0142-9612&rft.eissn=1878-5905&rft_id=info:doi/10.1016/j.biomaterials.2003.08.047&rft_dat=%3Cproquest_cross%3E28198055%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=28198055&rft_id=info:pmid/14643598&rft_els_id=S0142961203006744&rfr_iscdi=true