Probabilistic disease classification of expression-dependent proteomic data from mass spectrometry of human serum

We have developed an algorithm called Q5 for probabilistic classification of healthy versus disease whole serum samples using mass spectrometry. The algorithm employs principal components analysis (PCA) followed by linear discriminant analysis (LDA) on whole spectrum surface-enhanced laser desorptio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of computational biology 2003-01, Vol.10 (6), p.925-946
Hauptverfasser: Lilien, Ryan H, Farid, Hany, Donald, Bruce R
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 946
container_issue 6
container_start_page 925
container_title Journal of computational biology
container_volume 10
creator Lilien, Ryan H
Farid, Hany
Donald, Bruce R
description We have developed an algorithm called Q5 for probabilistic classification of healthy versus disease whole serum samples using mass spectrometry. The algorithm employs principal components analysis (PCA) followed by linear discriminant analysis (LDA) on whole spectrum surface-enhanced laser desorption/ionization time of flight (SELDI-TOF) mass spectrometry (MS) data and is demonstrated on four real datasets from complete, complex SELDI spectra of human blood serum. Q5 is a closed-form, exact solution to the problem of classification of complete mass spectra of a complex protein mixture. Q5 employs a probabilistic classification algorithm built upon a dimension-reduced linear discriminant analysis. Our solution is computationally efficient; it is noniterative and computes the optimal linear discriminant using closed-form equations. The optimal discriminant is computed and verified for datasets of complete, complex SELDI spectra of human blood serum. Replicate experiments of different training/testing splits of each dataset are employed to verify robustness of the algorithm. The probabilistic classification method achieves excellent performance. We achieve sensitivity, specificity, and positive predictive values above 97% on three ovarian cancer datasets and one prostate cancer dataset. The Q5 method outperforms previous full-spectrum complex sample spectral classification techniques and can provide clues as to the molecular identities of differentially expressed proteins and peptides.
doi_str_mv 10.1089/106652703322756159
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_71535784</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>17709414</sourcerecordid><originalsourceid>FETCH-LOGICAL-c440t-e662d25aa8913e599aa357ae22277af20e50b2d39839605fd3cc7c47b21a7a0e3</originalsourceid><addsrcrecordid>eNqFkctK7jAURoMo3l_AgWR0ZtVcmqQZingDQQc6LrvpLkbapiYp6NubH39wcAaOkh3W-tjhI-SMswvOGnvJmdZKGCalEEZpruwOOeRKmarRWu-WewGqQpgDcpTSO2Ncamb2yQGvbVOm5pB8PMfQQedHn7J3tPcJISF1I6TkB-8g-zDTMFD8XCKWtzBXPS449zhnusSQMUwbETLQIYaJTsWkaUGXy4Q5fm3st3WCmSaM63RC9gYYE55uz2Pyenvzcn1fPT7dPVxfPVaurlmuUGvRCwXQWC5RWQsglQEU5a8GBsFQsU700jbSaqaGXjpnXG06wcEAQ3lM_v3kliU_Vky5nXxyOI4wY1hTa7gqgU39J8iNYbbmG1D8gC6GlCIO7RL9BPGr5azdNNL-30iRzrfpazdh_6tsK5DfUmiISg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>17709414</pqid></control><display><type>article</type><title>Probabilistic disease classification of expression-dependent proteomic data from mass spectrometry of human serum</title><source>Mary Ann Liebert Online Subscription</source><source>MEDLINE</source><creator>Lilien, Ryan H ; Farid, Hany ; Donald, Bruce R</creator><creatorcontrib>Lilien, Ryan H ; Farid, Hany ; Donald, Bruce R</creatorcontrib><description>We have developed an algorithm called Q5 for probabilistic classification of healthy versus disease whole serum samples using mass spectrometry. The algorithm employs principal components analysis (PCA) followed by linear discriminant analysis (LDA) on whole spectrum surface-enhanced laser desorption/ionization time of flight (SELDI-TOF) mass spectrometry (MS) data and is demonstrated on four real datasets from complete, complex SELDI spectra of human blood serum. Q5 is a closed-form, exact solution to the problem of classification of complete mass spectra of a complex protein mixture. Q5 employs a probabilistic classification algorithm built upon a dimension-reduced linear discriminant analysis. Our solution is computationally efficient; it is noniterative and computes the optimal linear discriminant using closed-form equations. The optimal discriminant is computed and verified for datasets of complete, complex SELDI spectra of human blood serum. Replicate experiments of different training/testing splits of each dataset are employed to verify robustness of the algorithm. The probabilistic classification method achieves excellent performance. We achieve sensitivity, specificity, and positive predictive values above 97% on three ovarian cancer datasets and one prostate cancer dataset. The Q5 method outperforms previous full-spectrum complex sample spectral classification techniques and can provide clues as to the molecular identities of differentially expressed proteins and peptides.</description><identifier>ISSN: 1066-5277</identifier><identifier>EISSN: 1557-8666</identifier><identifier>DOI: 10.1089/106652703322756159</identifier><identifier>PMID: 14980018</identifier><language>eng</language><publisher>United States</publisher><subject>Algorithms ; Blood Proteins - analysis ; Blood Proteins - chemistry ; Databases, Protein ; Diagnosis, Differential ; Discriminant Analysis ; Female ; Gene Expression Regulation, Neoplastic ; Humans ; Male ; Ovarian Neoplasms - chemistry ; Ovarian Neoplasms - classification ; Ovarian Neoplasms - diagnosis ; Pattern Recognition, Automated ; Principal Component Analysis ; Probability ; Prostatic Neoplasms - chemistry ; Prostatic Neoplasms - classification ; Prostatic Neoplasms - diagnosis ; Proteome - analysis ; Proteome - chemistry ; Proteomics ; Serum - chemistry ; Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization</subject><ispartof>Journal of computational biology, 2003-01, Vol.10 (6), p.925-946</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c440t-e662d25aa8913e599aa357ae22277af20e50b2d39839605fd3cc7c47b21a7a0e3</citedby><cites>FETCH-LOGICAL-c440t-e662d25aa8913e599aa357ae22277af20e50b2d39839605fd3cc7c47b21a7a0e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,3029,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/14980018$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lilien, Ryan H</creatorcontrib><creatorcontrib>Farid, Hany</creatorcontrib><creatorcontrib>Donald, Bruce R</creatorcontrib><title>Probabilistic disease classification of expression-dependent proteomic data from mass spectrometry of human serum</title><title>Journal of computational biology</title><addtitle>J Comput Biol</addtitle><description>We have developed an algorithm called Q5 for probabilistic classification of healthy versus disease whole serum samples using mass spectrometry. The algorithm employs principal components analysis (PCA) followed by linear discriminant analysis (LDA) on whole spectrum surface-enhanced laser desorption/ionization time of flight (SELDI-TOF) mass spectrometry (MS) data and is demonstrated on four real datasets from complete, complex SELDI spectra of human blood serum. Q5 is a closed-form, exact solution to the problem of classification of complete mass spectra of a complex protein mixture. Q5 employs a probabilistic classification algorithm built upon a dimension-reduced linear discriminant analysis. Our solution is computationally efficient; it is noniterative and computes the optimal linear discriminant using closed-form equations. The optimal discriminant is computed and verified for datasets of complete, complex SELDI spectra of human blood serum. Replicate experiments of different training/testing splits of each dataset are employed to verify robustness of the algorithm. The probabilistic classification method achieves excellent performance. We achieve sensitivity, specificity, and positive predictive values above 97% on three ovarian cancer datasets and one prostate cancer dataset. The Q5 method outperforms previous full-spectrum complex sample spectral classification techniques and can provide clues as to the molecular identities of differentially expressed proteins and peptides.</description><subject>Algorithms</subject><subject>Blood Proteins - analysis</subject><subject>Blood Proteins - chemistry</subject><subject>Databases, Protein</subject><subject>Diagnosis, Differential</subject><subject>Discriminant Analysis</subject><subject>Female</subject><subject>Gene Expression Regulation, Neoplastic</subject><subject>Humans</subject><subject>Male</subject><subject>Ovarian Neoplasms - chemistry</subject><subject>Ovarian Neoplasms - classification</subject><subject>Ovarian Neoplasms - diagnosis</subject><subject>Pattern Recognition, Automated</subject><subject>Principal Component Analysis</subject><subject>Probability</subject><subject>Prostatic Neoplasms - chemistry</subject><subject>Prostatic Neoplasms - classification</subject><subject>Prostatic Neoplasms - diagnosis</subject><subject>Proteome - analysis</subject><subject>Proteome - chemistry</subject><subject>Proteomics</subject><subject>Serum - chemistry</subject><subject>Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization</subject><issn>1066-5277</issn><issn>1557-8666</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkctK7jAURoMo3l_AgWR0ZtVcmqQZingDQQc6LrvpLkbapiYp6NubH39wcAaOkh3W-tjhI-SMswvOGnvJmdZKGCalEEZpruwOOeRKmarRWu-WewGqQpgDcpTSO2Ncamb2yQGvbVOm5pB8PMfQQedHn7J3tPcJISF1I6TkB-8g-zDTMFD8XCKWtzBXPS449zhnusSQMUwbETLQIYaJTsWkaUGXy4Q5fm3st3WCmSaM63RC9gYYE55uz2Pyenvzcn1fPT7dPVxfPVaurlmuUGvRCwXQWC5RWQsglQEU5a8GBsFQsU700jbSaqaGXjpnXG06wcEAQ3lM_v3kliU_Vky5nXxyOI4wY1hTa7gqgU39J8iNYbbmG1D8gC6GlCIO7RL9BPGr5azdNNL-30iRzrfpazdh_6tsK5DfUmiISg</recordid><startdate>20030101</startdate><enddate>20030101</enddate><creator>Lilien, Ryan H</creator><creator>Farid, Hany</creator><creator>Donald, Bruce R</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>20030101</creationdate><title>Probabilistic disease classification of expression-dependent proteomic data from mass spectrometry of human serum</title><author>Lilien, Ryan H ; Farid, Hany ; Donald, Bruce R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c440t-e662d25aa8913e599aa357ae22277af20e50b2d39839605fd3cc7c47b21a7a0e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Algorithms</topic><topic>Blood Proteins - analysis</topic><topic>Blood Proteins - chemistry</topic><topic>Databases, Protein</topic><topic>Diagnosis, Differential</topic><topic>Discriminant Analysis</topic><topic>Female</topic><topic>Gene Expression Regulation, Neoplastic</topic><topic>Humans</topic><topic>Male</topic><topic>Ovarian Neoplasms - chemistry</topic><topic>Ovarian Neoplasms - classification</topic><topic>Ovarian Neoplasms - diagnosis</topic><topic>Pattern Recognition, Automated</topic><topic>Principal Component Analysis</topic><topic>Probability</topic><topic>Prostatic Neoplasms - chemistry</topic><topic>Prostatic Neoplasms - classification</topic><topic>Prostatic Neoplasms - diagnosis</topic><topic>Proteome - analysis</topic><topic>Proteome - chemistry</topic><topic>Proteomics</topic><topic>Serum - chemistry</topic><topic>Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lilien, Ryan H</creatorcontrib><creatorcontrib>Farid, Hany</creatorcontrib><creatorcontrib>Donald, Bruce R</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of computational biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lilien, Ryan H</au><au>Farid, Hany</au><au>Donald, Bruce R</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Probabilistic disease classification of expression-dependent proteomic data from mass spectrometry of human serum</atitle><jtitle>Journal of computational biology</jtitle><addtitle>J Comput Biol</addtitle><date>2003-01-01</date><risdate>2003</risdate><volume>10</volume><issue>6</issue><spage>925</spage><epage>946</epage><pages>925-946</pages><issn>1066-5277</issn><eissn>1557-8666</eissn><abstract>We have developed an algorithm called Q5 for probabilistic classification of healthy versus disease whole serum samples using mass spectrometry. The algorithm employs principal components analysis (PCA) followed by linear discriminant analysis (LDA) on whole spectrum surface-enhanced laser desorption/ionization time of flight (SELDI-TOF) mass spectrometry (MS) data and is demonstrated on four real datasets from complete, complex SELDI spectra of human blood serum. Q5 is a closed-form, exact solution to the problem of classification of complete mass spectra of a complex protein mixture. Q5 employs a probabilistic classification algorithm built upon a dimension-reduced linear discriminant analysis. Our solution is computationally efficient; it is noniterative and computes the optimal linear discriminant using closed-form equations. The optimal discriminant is computed and verified for datasets of complete, complex SELDI spectra of human blood serum. Replicate experiments of different training/testing splits of each dataset are employed to verify robustness of the algorithm. The probabilistic classification method achieves excellent performance. We achieve sensitivity, specificity, and positive predictive values above 97% on three ovarian cancer datasets and one prostate cancer dataset. The Q5 method outperforms previous full-spectrum complex sample spectral classification techniques and can provide clues as to the molecular identities of differentially expressed proteins and peptides.</abstract><cop>United States</cop><pmid>14980018</pmid><doi>10.1089/106652703322756159</doi><tpages>22</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1066-5277
ispartof Journal of computational biology, 2003-01, Vol.10 (6), p.925-946
issn 1066-5277
1557-8666
language eng
recordid cdi_proquest_miscellaneous_71535784
source Mary Ann Liebert Online Subscription; MEDLINE
subjects Algorithms
Blood Proteins - analysis
Blood Proteins - chemistry
Databases, Protein
Diagnosis, Differential
Discriminant Analysis
Female
Gene Expression Regulation, Neoplastic
Humans
Male
Ovarian Neoplasms - chemistry
Ovarian Neoplasms - classification
Ovarian Neoplasms - diagnosis
Pattern Recognition, Automated
Principal Component Analysis
Probability
Prostatic Neoplasms - chemistry
Prostatic Neoplasms - classification
Prostatic Neoplasms - diagnosis
Proteome - analysis
Proteome - chemistry
Proteomics
Serum - chemistry
Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
title Probabilistic disease classification of expression-dependent proteomic data from mass spectrometry of human serum
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T21%3A16%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Probabilistic%20disease%20classification%20of%20expression-dependent%20proteomic%20data%20from%20mass%20spectrometry%20of%20human%20serum&rft.jtitle=Journal%20of%20computational%20biology&rft.au=Lilien,%20Ryan%20H&rft.date=2003-01-01&rft.volume=10&rft.issue=6&rft.spage=925&rft.epage=946&rft.pages=925-946&rft.issn=1066-5277&rft.eissn=1557-8666&rft_id=info:doi/10.1089/106652703322756159&rft_dat=%3Cproquest_cross%3E17709414%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=17709414&rft_id=info:pmid/14980018&rfr_iscdi=true