Lipase‐catalyzed methanolysis of triricinolein in organic solvent to produce 1,2(2,3)‐diricinolein

The objective of this study was to find the optimal parameters for lipase‐catalyzed methanolysis of triricinolein to produce 1,2(2,3)‐diricinolein. Four different immobilized lipases were tested, Candida antarctica type B (CALB), Rhizomucor miehei (RML), Pseudomonas cepacia (PCL), and Penicillium ro...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Lipids 2003-11, Vol.38 (11), p.1197-1206
Hauptverfasser: Turner, Charlotta, He, Xiaohua, Nguyen, Tasha, Lin, Jiann‐Tsyh, Wong, Rosalind Y., Lundin, Robert E., Harden, Leslie, McKeon, Thomas
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1206
container_issue 11
container_start_page 1197
container_title Lipids
container_volume 38
creator Turner, Charlotta
He, Xiaohua
Nguyen, Tasha
Lin, Jiann‐Tsyh
Wong, Rosalind Y.
Lundin, Robert E.
Harden, Leslie
McKeon, Thomas
description The objective of this study was to find the optimal parameters for lipase‐catalyzed methanolysis of triricinolein to produce 1,2(2,3)‐diricinolein. Four different immobilized lipases were tested, Candida antarctica type B (CALB), Rhizomucor miehei (RML), Pseudomonas cepacia (PCL), and Penicillium roquefortii (PRL). n‐Hexane and diisopropyl ether (DIPE) were examined as reaction media at three different water activities (aw), 0.11, 0.53, and 0.97. The consumption of triricinolein and the formation of 1,2(2,3)‐diricinolein, methyl ricinoleate, and ricinoleic acid were followed for up to 48 h. PRL gave the highest yield of 1,2(2,3)‐diricinolein. Moreover, this lipase showed the highest specificity for the studied reaction, i.e., high selectivity for the reaction with triricinolein but low for 1,2(2,3)‐diricinolein. Recoveries of 93 and 88% DAG were obtained using PRL in DIPE at aw of 0.11 and 0.53, respectively. Further, NMR studies showed that a higher purity of the 1,2(2,3)‐isomer vs. the 1,3‐isomer was achieved at higher aw (88% at aw=0.53), compared to lower aw (71% at aw=0.11). The DAG obtained was acylated by the DAG acyltransferase from Arabidopsis thaliana. Therefore, this enzymatic product is a useful enzyme substrate for lipid biosynthesis. Accordingly, the use of PRL in DIPE at aw 0.53 is considered optimal for the synthesis of 1,2(2,3)‐diricinolein from triricinolein.
doi_str_mv 10.1007/s11745-003-1179-5
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_71508777</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>71508777</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3727-8f4ea999e197b0f22d2c73f424bff2c2055bb789ef6603849bdb7d213c9289ad3</originalsourceid><addsrcrecordid>eNqFkc1KAzEUhYMoWqsP4EYGF6LgaH6bZCn-Q0EXug6ZTKKR6aQmM0pd-Qg-o09iSguKG-FC7g3fOVzuAWAHwWMEIT9JCHHKSghJmTtZshUwQIyJUhLIV8EAQkxLiiHaAJspPecRUcnWwQainBAyGg2AG_upTvbr49PoTjezd1sXE9s96TY0s-RTEVzRRR-98fnH-rbIFeKjbr0pUmhebdsVXSimMdS9sQU6wgf4iBxmw_qXagusOd0ku718h-Dh8uL-7Loc317dnJ2OS0M45qVw1GoppUWSV9BhXGPDiaOYVs5hgyFjVcWFtG40gkRQWdUVrzEiRmIhdU2GYH_hm_d56W3q1MQnY5tGtzb0SXHEoOCcZ3DvD_gc-tjm3ZQQApHsyTKEFpCJIaVonZpGP9FxphBU8wTUIgGVE1DzBNRcs7s07quJrX8Uy5NngC-AN9_Y2f-Oanxzd47yQcg3i9eTNg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>888132135</pqid></control><display><type>article</type><title>Lipase‐catalyzed methanolysis of triricinolein in organic solvent to produce 1,2(2,3)‐diricinolein</title><source>MEDLINE</source><source>Wiley Online Library All Journals</source><source>SpringerLink Journals - AutoHoldings</source><creator>Turner, Charlotta ; He, Xiaohua ; Nguyen, Tasha ; Lin, Jiann‐Tsyh ; Wong, Rosalind Y. ; Lundin, Robert E. ; Harden, Leslie ; McKeon, Thomas</creator><creatorcontrib>Turner, Charlotta ; He, Xiaohua ; Nguyen, Tasha ; Lin, Jiann‐Tsyh ; Wong, Rosalind Y. ; Lundin, Robert E. ; Harden, Leslie ; McKeon, Thomas</creatorcontrib><description>The objective of this study was to find the optimal parameters for lipase‐catalyzed methanolysis of triricinolein to produce 1,2(2,3)‐diricinolein. Four different immobilized lipases were tested, Candida antarctica type B (CALB), Rhizomucor miehei (RML), Pseudomonas cepacia (PCL), and Penicillium roquefortii (PRL). n‐Hexane and diisopropyl ether (DIPE) were examined as reaction media at three different water activities (aw), 0.11, 0.53, and 0.97. The consumption of triricinolein and the formation of 1,2(2,3)‐diricinolein, methyl ricinoleate, and ricinoleic acid were followed for up to 48 h. PRL gave the highest yield of 1,2(2,3)‐diricinolein. Moreover, this lipase showed the highest specificity for the studied reaction, i.e., high selectivity for the reaction with triricinolein but low for 1,2(2,3)‐diricinolein. Recoveries of 93 and 88% DAG were obtained using PRL in DIPE at aw of 0.11 and 0.53, respectively. Further, NMR studies showed that a higher purity of the 1,2(2,3)‐isomer vs. the 1,3‐isomer was achieved at higher aw (88% at aw=0.53), compared to lower aw (71% at aw=0.11). The DAG obtained was acylated by the DAG acyltransferase from Arabidopsis thaliana. Therefore, this enzymatic product is a useful enzyme substrate for lipid biosynthesis. Accordingly, the use of PRL in DIPE at aw 0.53 is considered optimal for the synthesis of 1,2(2,3)‐diricinolein from triricinolein.</description><identifier>ISSN: 0024-4201</identifier><identifier>EISSN: 1558-9307</identifier><identifier>DOI: 10.1007/s11745-003-1179-5</identifier><identifier>PMID: 14733366</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer‐Verlag</publisher><subject>Biosynthesis ; Chromatography, High Pressure Liquid ; Enzymes, Immobilized - metabolism ; Fatty Acids, Nonesterified - metabolism ; Glycerol - metabolism ; Lipase - metabolism ; Lipid Metabolism ; Lipids - chemistry ; Mass Spectrometry ; Ricinus - metabolism ; Time Factors ; Triglycerides - metabolism</subject><ispartof>Lipids, 2003-11, Vol.38 (11), p.1197-1206</ispartof><rights>2003 American Oil Chemists' Society (AOCS)</rights><rights>AOCS Press 2003</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3727-8f4ea999e197b0f22d2c73f424bff2c2055bb789ef6603849bdb7d213c9289ad3</citedby><cites>FETCH-LOGICAL-c3727-8f4ea999e197b0f22d2c73f424bff2c2055bb789ef6603849bdb7d213c9289ad3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1007%2Fs11745-003-1179-5$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1007%2Fs11745-003-1179-5$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/14733366$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Turner, Charlotta</creatorcontrib><creatorcontrib>He, Xiaohua</creatorcontrib><creatorcontrib>Nguyen, Tasha</creatorcontrib><creatorcontrib>Lin, Jiann‐Tsyh</creatorcontrib><creatorcontrib>Wong, Rosalind Y.</creatorcontrib><creatorcontrib>Lundin, Robert E.</creatorcontrib><creatorcontrib>Harden, Leslie</creatorcontrib><creatorcontrib>McKeon, Thomas</creatorcontrib><title>Lipase‐catalyzed methanolysis of triricinolein in organic solvent to produce 1,2(2,3)‐diricinolein</title><title>Lipids</title><addtitle>Lipids</addtitle><description>The objective of this study was to find the optimal parameters for lipase‐catalyzed methanolysis of triricinolein to produce 1,2(2,3)‐diricinolein. Four different immobilized lipases were tested, Candida antarctica type B (CALB), Rhizomucor miehei (RML), Pseudomonas cepacia (PCL), and Penicillium roquefortii (PRL). n‐Hexane and diisopropyl ether (DIPE) were examined as reaction media at three different water activities (aw), 0.11, 0.53, and 0.97. The consumption of triricinolein and the formation of 1,2(2,3)‐diricinolein, methyl ricinoleate, and ricinoleic acid were followed for up to 48 h. PRL gave the highest yield of 1,2(2,3)‐diricinolein. Moreover, this lipase showed the highest specificity for the studied reaction, i.e., high selectivity for the reaction with triricinolein but low for 1,2(2,3)‐diricinolein. Recoveries of 93 and 88% DAG were obtained using PRL in DIPE at aw of 0.11 and 0.53, respectively. Further, NMR studies showed that a higher purity of the 1,2(2,3)‐isomer vs. the 1,3‐isomer was achieved at higher aw (88% at aw=0.53), compared to lower aw (71% at aw=0.11). The DAG obtained was acylated by the DAG acyltransferase from Arabidopsis thaliana. Therefore, this enzymatic product is a useful enzyme substrate for lipid biosynthesis. Accordingly, the use of PRL in DIPE at aw 0.53 is considered optimal for the synthesis of 1,2(2,3)‐diricinolein from triricinolein.</description><subject>Biosynthesis</subject><subject>Chromatography, High Pressure Liquid</subject><subject>Enzymes, Immobilized - metabolism</subject><subject>Fatty Acids, Nonesterified - metabolism</subject><subject>Glycerol - metabolism</subject><subject>Lipase - metabolism</subject><subject>Lipid Metabolism</subject><subject>Lipids - chemistry</subject><subject>Mass Spectrometry</subject><subject>Ricinus - metabolism</subject><subject>Time Factors</subject><subject>Triglycerides - metabolism</subject><issn>0024-4201</issn><issn>1558-9307</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqFkc1KAzEUhYMoWqsP4EYGF6LgaH6bZCn-Q0EXug6ZTKKR6aQmM0pd-Qg-o09iSguKG-FC7g3fOVzuAWAHwWMEIT9JCHHKSghJmTtZshUwQIyJUhLIV8EAQkxLiiHaAJspPecRUcnWwQainBAyGg2AG_upTvbr49PoTjezd1sXE9s96TY0s-RTEVzRRR-98fnH-rbIFeKjbr0pUmhebdsVXSimMdS9sQU6wgf4iBxmw_qXagusOd0ku718h-Dh8uL-7Loc317dnJ2OS0M45qVw1GoppUWSV9BhXGPDiaOYVs5hgyFjVcWFtG40gkRQWdUVrzEiRmIhdU2GYH_hm_d56W3q1MQnY5tGtzb0SXHEoOCcZ3DvD_gc-tjm3ZQQApHsyTKEFpCJIaVonZpGP9FxphBU8wTUIgGVE1DzBNRcs7s07quJrX8Uy5NngC-AN9_Y2f-Oanxzd47yQcg3i9eTNg</recordid><startdate>200311</startdate><enddate>200311</enddate><creator>Turner, Charlotta</creator><creator>He, Xiaohua</creator><creator>Nguyen, Tasha</creator><creator>Lin, Jiann‐Tsyh</creator><creator>Wong, Rosalind Y.</creator><creator>Lundin, Robert E.</creator><creator>Harden, Leslie</creator><creator>McKeon, Thomas</creator><general>Springer‐Verlag</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7T7</scope><scope>7TK</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope></search><sort><creationdate>200311</creationdate><title>Lipase‐catalyzed methanolysis of triricinolein in organic solvent to produce 1,2(2,3)‐diricinolein</title><author>Turner, Charlotta ; He, Xiaohua ; Nguyen, Tasha ; Lin, Jiann‐Tsyh ; Wong, Rosalind Y. ; Lundin, Robert E. ; Harden, Leslie ; McKeon, Thomas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3727-8f4ea999e197b0f22d2c73f424bff2c2055bb789ef6603849bdb7d213c9289ad3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Biosynthesis</topic><topic>Chromatography, High Pressure Liquid</topic><topic>Enzymes, Immobilized - metabolism</topic><topic>Fatty Acids, Nonesterified - metabolism</topic><topic>Glycerol - metabolism</topic><topic>Lipase - metabolism</topic><topic>Lipid Metabolism</topic><topic>Lipids - chemistry</topic><topic>Mass Spectrometry</topic><topic>Ricinus - metabolism</topic><topic>Time Factors</topic><topic>Triglycerides - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Turner, Charlotta</creatorcontrib><creatorcontrib>He, Xiaohua</creatorcontrib><creatorcontrib>Nguyen, Tasha</creatorcontrib><creatorcontrib>Lin, Jiann‐Tsyh</creatorcontrib><creatorcontrib>Wong, Rosalind Y.</creatorcontrib><creatorcontrib>Lundin, Robert E.</creatorcontrib><creatorcontrib>Harden, Leslie</creatorcontrib><creatorcontrib>McKeon, Thomas</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Neurosciences Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><jtitle>Lipids</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Turner, Charlotta</au><au>He, Xiaohua</au><au>Nguyen, Tasha</au><au>Lin, Jiann‐Tsyh</au><au>Wong, Rosalind Y.</au><au>Lundin, Robert E.</au><au>Harden, Leslie</au><au>McKeon, Thomas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Lipase‐catalyzed methanolysis of triricinolein in organic solvent to produce 1,2(2,3)‐diricinolein</atitle><jtitle>Lipids</jtitle><addtitle>Lipids</addtitle><date>2003-11</date><risdate>2003</risdate><volume>38</volume><issue>11</issue><spage>1197</spage><epage>1206</epage><pages>1197-1206</pages><issn>0024-4201</issn><eissn>1558-9307</eissn><abstract>The objective of this study was to find the optimal parameters for lipase‐catalyzed methanolysis of triricinolein to produce 1,2(2,3)‐diricinolein. Four different immobilized lipases were tested, Candida antarctica type B (CALB), Rhizomucor miehei (RML), Pseudomonas cepacia (PCL), and Penicillium roquefortii (PRL). n‐Hexane and diisopropyl ether (DIPE) were examined as reaction media at three different water activities (aw), 0.11, 0.53, and 0.97. The consumption of triricinolein and the formation of 1,2(2,3)‐diricinolein, methyl ricinoleate, and ricinoleic acid were followed for up to 48 h. PRL gave the highest yield of 1,2(2,3)‐diricinolein. Moreover, this lipase showed the highest specificity for the studied reaction, i.e., high selectivity for the reaction with triricinolein but low for 1,2(2,3)‐diricinolein. Recoveries of 93 and 88% DAG were obtained using PRL in DIPE at aw of 0.11 and 0.53, respectively. Further, NMR studies showed that a higher purity of the 1,2(2,3)‐isomer vs. the 1,3‐isomer was achieved at higher aw (88% at aw=0.53), compared to lower aw (71% at aw=0.11). The DAG obtained was acylated by the DAG acyltransferase from Arabidopsis thaliana. Therefore, this enzymatic product is a useful enzyme substrate for lipid biosynthesis. Accordingly, the use of PRL in DIPE at aw 0.53 is considered optimal for the synthesis of 1,2(2,3)‐diricinolein from triricinolein.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer‐Verlag</pub><pmid>14733366</pmid><doi>10.1007/s11745-003-1179-5</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0024-4201
ispartof Lipids, 2003-11, Vol.38 (11), p.1197-1206
issn 0024-4201
1558-9307
language eng
recordid cdi_proquest_miscellaneous_71508777
source MEDLINE; Wiley Online Library All Journals; SpringerLink Journals - AutoHoldings
subjects Biosynthesis
Chromatography, High Pressure Liquid
Enzymes, Immobilized - metabolism
Fatty Acids, Nonesterified - metabolism
Glycerol - metabolism
Lipase - metabolism
Lipid Metabolism
Lipids - chemistry
Mass Spectrometry
Ricinus - metabolism
Time Factors
Triglycerides - metabolism
title Lipase‐catalyzed methanolysis of triricinolein in organic solvent to produce 1,2(2,3)‐diricinolein
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T20%3A19%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Lipase%E2%80%90catalyzed%20methanolysis%20of%20triricinolein%20in%20organic%20solvent%20to%20produce%201,2(2,3)%E2%80%90diricinolein&rft.jtitle=Lipids&rft.au=Turner,%20Charlotta&rft.date=2003-11&rft.volume=38&rft.issue=11&rft.spage=1197&rft.epage=1206&rft.pages=1197-1206&rft.issn=0024-4201&rft.eissn=1558-9307&rft_id=info:doi/10.1007/s11745-003-1179-5&rft_dat=%3Cproquest_cross%3E71508777%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=888132135&rft_id=info:pmid/14733366&rfr_iscdi=true