Lipase‐catalyzed methanolysis of triricinolein in organic solvent to produce 1,2(2,3)‐diricinolein
The objective of this study was to find the optimal parameters for lipase‐catalyzed methanolysis of triricinolein to produce 1,2(2,3)‐diricinolein. Four different immobilized lipases were tested, Candida antarctica type B (CALB), Rhizomucor miehei (RML), Pseudomonas cepacia (PCL), and Penicillium ro...
Gespeichert in:
Veröffentlicht in: | Lipids 2003-11, Vol.38 (11), p.1197-1206 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1206 |
---|---|
container_issue | 11 |
container_start_page | 1197 |
container_title | Lipids |
container_volume | 38 |
creator | Turner, Charlotta He, Xiaohua Nguyen, Tasha Lin, Jiann‐Tsyh Wong, Rosalind Y. Lundin, Robert E. Harden, Leslie McKeon, Thomas |
description | The objective of this study was to find the optimal parameters for lipase‐catalyzed methanolysis of triricinolein to produce 1,2(2,3)‐diricinolein. Four different immobilized lipases were tested, Candida antarctica type B (CALB), Rhizomucor miehei (RML), Pseudomonas cepacia (PCL), and Penicillium roquefortii (PRL). n‐Hexane and diisopropyl ether (DIPE) were examined as reaction media at three different water activities (aw), 0.11, 0.53, and 0.97. The consumption of triricinolein and the formation of 1,2(2,3)‐diricinolein, methyl ricinoleate, and ricinoleic acid were followed for up to 48 h. PRL gave the highest yield of 1,2(2,3)‐diricinolein. Moreover, this lipase showed the highest specificity for the studied reaction, i.e., high selectivity for the reaction with triricinolein but low for 1,2(2,3)‐diricinolein. Recoveries of 93 and 88% DAG were obtained using PRL in DIPE at aw of 0.11 and 0.53, respectively. Further, NMR studies showed that a higher purity of the 1,2(2,3)‐isomer vs. the 1,3‐isomer was achieved at higher aw (88% at aw=0.53), compared to lower aw (71% at aw=0.11). The DAG obtained was acylated by the DAG acyltransferase from Arabidopsis thaliana. Therefore, this enzymatic product is a useful enzyme substrate for lipid biosynthesis. Accordingly, the use of PRL in DIPE at aw 0.53 is considered optimal for the synthesis of 1,2(2,3)‐diricinolein from triricinolein. |
doi_str_mv | 10.1007/s11745-003-1179-5 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_71508777</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>71508777</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3727-8f4ea999e197b0f22d2c73f424bff2c2055bb789ef6603849bdb7d213c9289ad3</originalsourceid><addsrcrecordid>eNqFkc1KAzEUhYMoWqsP4EYGF6LgaH6bZCn-Q0EXug6ZTKKR6aQmM0pd-Qg-o09iSguKG-FC7g3fOVzuAWAHwWMEIT9JCHHKSghJmTtZshUwQIyJUhLIV8EAQkxLiiHaAJspPecRUcnWwQainBAyGg2AG_upTvbr49PoTjezd1sXE9s96TY0s-RTEVzRRR-98fnH-rbIFeKjbr0pUmhebdsVXSimMdS9sQU6wgf4iBxmw_qXagusOd0ku718h-Dh8uL-7Loc317dnJ2OS0M45qVw1GoppUWSV9BhXGPDiaOYVs5hgyFjVcWFtG40gkRQWdUVrzEiRmIhdU2GYH_hm_d56W3q1MQnY5tGtzb0SXHEoOCcZ3DvD_gc-tjm3ZQQApHsyTKEFpCJIaVonZpGP9FxphBU8wTUIgGVE1DzBNRcs7s07quJrX8Uy5NngC-AN9_Y2f-Oanxzd47yQcg3i9eTNg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>888132135</pqid></control><display><type>article</type><title>Lipase‐catalyzed methanolysis of triricinolein in organic solvent to produce 1,2(2,3)‐diricinolein</title><source>MEDLINE</source><source>Wiley Online Library All Journals</source><source>SpringerLink Journals - AutoHoldings</source><creator>Turner, Charlotta ; He, Xiaohua ; Nguyen, Tasha ; Lin, Jiann‐Tsyh ; Wong, Rosalind Y. ; Lundin, Robert E. ; Harden, Leslie ; McKeon, Thomas</creator><creatorcontrib>Turner, Charlotta ; He, Xiaohua ; Nguyen, Tasha ; Lin, Jiann‐Tsyh ; Wong, Rosalind Y. ; Lundin, Robert E. ; Harden, Leslie ; McKeon, Thomas</creatorcontrib><description>The objective of this study was to find the optimal parameters for lipase‐catalyzed methanolysis of triricinolein to produce 1,2(2,3)‐diricinolein. Four different immobilized lipases were tested, Candida antarctica type B (CALB), Rhizomucor miehei (RML), Pseudomonas cepacia (PCL), and Penicillium roquefortii (PRL). n‐Hexane and diisopropyl ether (DIPE) were examined as reaction media at three different water activities (aw), 0.11, 0.53, and 0.97. The consumption of triricinolein and the formation of 1,2(2,3)‐diricinolein, methyl ricinoleate, and ricinoleic acid were followed for up to 48 h. PRL gave the highest yield of 1,2(2,3)‐diricinolein. Moreover, this lipase showed the highest specificity for the studied reaction, i.e., high selectivity for the reaction with triricinolein but low for 1,2(2,3)‐diricinolein. Recoveries of 93 and 88% DAG were obtained using PRL in DIPE at aw of 0.11 and 0.53, respectively. Further, NMR studies showed that a higher purity of the 1,2(2,3)‐isomer vs. the 1,3‐isomer was achieved at higher aw (88% at aw=0.53), compared to lower aw (71% at aw=0.11). The DAG obtained was acylated by the DAG acyltransferase from Arabidopsis thaliana. Therefore, this enzymatic product is a useful enzyme substrate for lipid biosynthesis. Accordingly, the use of PRL in DIPE at aw 0.53 is considered optimal for the synthesis of 1,2(2,3)‐diricinolein from triricinolein.</description><identifier>ISSN: 0024-4201</identifier><identifier>EISSN: 1558-9307</identifier><identifier>DOI: 10.1007/s11745-003-1179-5</identifier><identifier>PMID: 14733366</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer‐Verlag</publisher><subject>Biosynthesis ; Chromatography, High Pressure Liquid ; Enzymes, Immobilized - metabolism ; Fatty Acids, Nonesterified - metabolism ; Glycerol - metabolism ; Lipase - metabolism ; Lipid Metabolism ; Lipids - chemistry ; Mass Spectrometry ; Ricinus - metabolism ; Time Factors ; Triglycerides - metabolism</subject><ispartof>Lipids, 2003-11, Vol.38 (11), p.1197-1206</ispartof><rights>2003 American Oil Chemists' Society (AOCS)</rights><rights>AOCS Press 2003</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3727-8f4ea999e197b0f22d2c73f424bff2c2055bb789ef6603849bdb7d213c9289ad3</citedby><cites>FETCH-LOGICAL-c3727-8f4ea999e197b0f22d2c73f424bff2c2055bb789ef6603849bdb7d213c9289ad3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1007%2Fs11745-003-1179-5$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1007%2Fs11745-003-1179-5$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/14733366$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Turner, Charlotta</creatorcontrib><creatorcontrib>He, Xiaohua</creatorcontrib><creatorcontrib>Nguyen, Tasha</creatorcontrib><creatorcontrib>Lin, Jiann‐Tsyh</creatorcontrib><creatorcontrib>Wong, Rosalind Y.</creatorcontrib><creatorcontrib>Lundin, Robert E.</creatorcontrib><creatorcontrib>Harden, Leslie</creatorcontrib><creatorcontrib>McKeon, Thomas</creatorcontrib><title>Lipase‐catalyzed methanolysis of triricinolein in organic solvent to produce 1,2(2,3)‐diricinolein</title><title>Lipids</title><addtitle>Lipids</addtitle><description>The objective of this study was to find the optimal parameters for lipase‐catalyzed methanolysis of triricinolein to produce 1,2(2,3)‐diricinolein. Four different immobilized lipases were tested, Candida antarctica type B (CALB), Rhizomucor miehei (RML), Pseudomonas cepacia (PCL), and Penicillium roquefortii (PRL). n‐Hexane and diisopropyl ether (DIPE) were examined as reaction media at three different water activities (aw), 0.11, 0.53, and 0.97. The consumption of triricinolein and the formation of 1,2(2,3)‐diricinolein, methyl ricinoleate, and ricinoleic acid were followed for up to 48 h. PRL gave the highest yield of 1,2(2,3)‐diricinolein. Moreover, this lipase showed the highest specificity for the studied reaction, i.e., high selectivity for the reaction with triricinolein but low for 1,2(2,3)‐diricinolein. Recoveries of 93 and 88% DAG were obtained using PRL in DIPE at aw of 0.11 and 0.53, respectively. Further, NMR studies showed that a higher purity of the 1,2(2,3)‐isomer vs. the 1,3‐isomer was achieved at higher aw (88% at aw=0.53), compared to lower aw (71% at aw=0.11). The DAG obtained was acylated by the DAG acyltransferase from Arabidopsis thaliana. Therefore, this enzymatic product is a useful enzyme substrate for lipid biosynthesis. Accordingly, the use of PRL in DIPE at aw 0.53 is considered optimal for the synthesis of 1,2(2,3)‐diricinolein from triricinolein.</description><subject>Biosynthesis</subject><subject>Chromatography, High Pressure Liquid</subject><subject>Enzymes, Immobilized - metabolism</subject><subject>Fatty Acids, Nonesterified - metabolism</subject><subject>Glycerol - metabolism</subject><subject>Lipase - metabolism</subject><subject>Lipid Metabolism</subject><subject>Lipids - chemistry</subject><subject>Mass Spectrometry</subject><subject>Ricinus - metabolism</subject><subject>Time Factors</subject><subject>Triglycerides - metabolism</subject><issn>0024-4201</issn><issn>1558-9307</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqFkc1KAzEUhYMoWqsP4EYGF6LgaH6bZCn-Q0EXug6ZTKKR6aQmM0pd-Qg-o09iSguKG-FC7g3fOVzuAWAHwWMEIT9JCHHKSghJmTtZshUwQIyJUhLIV8EAQkxLiiHaAJspPecRUcnWwQainBAyGg2AG_upTvbr49PoTjezd1sXE9s96TY0s-RTEVzRRR-98fnH-rbIFeKjbr0pUmhebdsVXSimMdS9sQU6wgf4iBxmw_qXagusOd0ku718h-Dh8uL-7Loc317dnJ2OS0M45qVw1GoppUWSV9BhXGPDiaOYVs5hgyFjVcWFtG40gkRQWdUVrzEiRmIhdU2GYH_hm_d56W3q1MQnY5tGtzb0SXHEoOCcZ3DvD_gc-tjm3ZQQApHsyTKEFpCJIaVonZpGP9FxphBU8wTUIgGVE1DzBNRcs7s07quJrX8Uy5NngC-AN9_Y2f-Oanxzd47yQcg3i9eTNg</recordid><startdate>200311</startdate><enddate>200311</enddate><creator>Turner, Charlotta</creator><creator>He, Xiaohua</creator><creator>Nguyen, Tasha</creator><creator>Lin, Jiann‐Tsyh</creator><creator>Wong, Rosalind Y.</creator><creator>Lundin, Robert E.</creator><creator>Harden, Leslie</creator><creator>McKeon, Thomas</creator><general>Springer‐Verlag</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7T7</scope><scope>7TK</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope></search><sort><creationdate>200311</creationdate><title>Lipase‐catalyzed methanolysis of triricinolein in organic solvent to produce 1,2(2,3)‐diricinolein</title><author>Turner, Charlotta ; He, Xiaohua ; Nguyen, Tasha ; Lin, Jiann‐Tsyh ; Wong, Rosalind Y. ; Lundin, Robert E. ; Harden, Leslie ; McKeon, Thomas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3727-8f4ea999e197b0f22d2c73f424bff2c2055bb789ef6603849bdb7d213c9289ad3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Biosynthesis</topic><topic>Chromatography, High Pressure Liquid</topic><topic>Enzymes, Immobilized - metabolism</topic><topic>Fatty Acids, Nonesterified - metabolism</topic><topic>Glycerol - metabolism</topic><topic>Lipase - metabolism</topic><topic>Lipid Metabolism</topic><topic>Lipids - chemistry</topic><topic>Mass Spectrometry</topic><topic>Ricinus - metabolism</topic><topic>Time Factors</topic><topic>Triglycerides - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Turner, Charlotta</creatorcontrib><creatorcontrib>He, Xiaohua</creatorcontrib><creatorcontrib>Nguyen, Tasha</creatorcontrib><creatorcontrib>Lin, Jiann‐Tsyh</creatorcontrib><creatorcontrib>Wong, Rosalind Y.</creatorcontrib><creatorcontrib>Lundin, Robert E.</creatorcontrib><creatorcontrib>Harden, Leslie</creatorcontrib><creatorcontrib>McKeon, Thomas</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Neurosciences Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><jtitle>Lipids</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Turner, Charlotta</au><au>He, Xiaohua</au><au>Nguyen, Tasha</au><au>Lin, Jiann‐Tsyh</au><au>Wong, Rosalind Y.</au><au>Lundin, Robert E.</au><au>Harden, Leslie</au><au>McKeon, Thomas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Lipase‐catalyzed methanolysis of triricinolein in organic solvent to produce 1,2(2,3)‐diricinolein</atitle><jtitle>Lipids</jtitle><addtitle>Lipids</addtitle><date>2003-11</date><risdate>2003</risdate><volume>38</volume><issue>11</issue><spage>1197</spage><epage>1206</epage><pages>1197-1206</pages><issn>0024-4201</issn><eissn>1558-9307</eissn><abstract>The objective of this study was to find the optimal parameters for lipase‐catalyzed methanolysis of triricinolein to produce 1,2(2,3)‐diricinolein. Four different immobilized lipases were tested, Candida antarctica type B (CALB), Rhizomucor miehei (RML), Pseudomonas cepacia (PCL), and Penicillium roquefortii (PRL). n‐Hexane and diisopropyl ether (DIPE) were examined as reaction media at three different water activities (aw), 0.11, 0.53, and 0.97. The consumption of triricinolein and the formation of 1,2(2,3)‐diricinolein, methyl ricinoleate, and ricinoleic acid were followed for up to 48 h. PRL gave the highest yield of 1,2(2,3)‐diricinolein. Moreover, this lipase showed the highest specificity for the studied reaction, i.e., high selectivity for the reaction with triricinolein but low for 1,2(2,3)‐diricinolein. Recoveries of 93 and 88% DAG were obtained using PRL in DIPE at aw of 0.11 and 0.53, respectively. Further, NMR studies showed that a higher purity of the 1,2(2,3)‐isomer vs. the 1,3‐isomer was achieved at higher aw (88% at aw=0.53), compared to lower aw (71% at aw=0.11). The DAG obtained was acylated by the DAG acyltransferase from Arabidopsis thaliana. Therefore, this enzymatic product is a useful enzyme substrate for lipid biosynthesis. Accordingly, the use of PRL in DIPE at aw 0.53 is considered optimal for the synthesis of 1,2(2,3)‐diricinolein from triricinolein.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer‐Verlag</pub><pmid>14733366</pmid><doi>10.1007/s11745-003-1179-5</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0024-4201 |
ispartof | Lipids, 2003-11, Vol.38 (11), p.1197-1206 |
issn | 0024-4201 1558-9307 |
language | eng |
recordid | cdi_proquest_miscellaneous_71508777 |
source | MEDLINE; Wiley Online Library All Journals; SpringerLink Journals - AutoHoldings |
subjects | Biosynthesis Chromatography, High Pressure Liquid Enzymes, Immobilized - metabolism Fatty Acids, Nonesterified - metabolism Glycerol - metabolism Lipase - metabolism Lipid Metabolism Lipids - chemistry Mass Spectrometry Ricinus - metabolism Time Factors Triglycerides - metabolism |
title | Lipase‐catalyzed methanolysis of triricinolein in organic solvent to produce 1,2(2,3)‐diricinolein |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T20%3A19%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Lipase%E2%80%90catalyzed%20methanolysis%20of%20triricinolein%20in%20organic%20solvent%20to%20produce%201,2(2,3)%E2%80%90diricinolein&rft.jtitle=Lipids&rft.au=Turner,%20Charlotta&rft.date=2003-11&rft.volume=38&rft.issue=11&rft.spage=1197&rft.epage=1206&rft.pages=1197-1206&rft.issn=0024-4201&rft.eissn=1558-9307&rft_id=info:doi/10.1007/s11745-003-1179-5&rft_dat=%3Cproquest_cross%3E71508777%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=888132135&rft_id=info:pmid/14733366&rfr_iscdi=true |