Oxygen Metabolism Causes Chromosome Breaks and Is Associated with the Neuronal Apoptosis Observed in DNA Double-Strand Break Repair Mutants

Cells deficient in a major DNA double-strand break repair pathway (nonhomologous DNA end joining [NHEJ]) have increased spontaneous chromosome breaks [1–3]; however, the source of these chromosome breaks has remained undefined. Here, we show that the observed spontaneous chromosome breaks are partia...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Current biology 2002-03, Vol.12 (5), p.397-402
Hauptverfasser: Karanjawala, Zarir E., Murphy, Niamh, Hinton, David R., Hsieh, Chih-Lin, Lieber, Michael R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 402
container_issue 5
container_start_page 397
container_title Current biology
container_volume 12
creator Karanjawala, Zarir E.
Murphy, Niamh
Hinton, David R.
Hsieh, Chih-Lin
Lieber, Michael R.
description Cells deficient in a major DNA double-strand break repair pathway (nonhomologous DNA end joining [NHEJ]) have increased spontaneous chromosome breaks [1–3]; however, the source of these chromosome breaks has remained undefined. Here, we show that the observed spontaneous chromosome breaks are partially suppressed by reducing the cellular oxygen tension. Conversely, elevating the level of reactive oxygen species by overexpressing the antioxidant enzyme superoxide dismutase 1 (SOD1), in a transgenic mouse, increases chromosome breakage. The effect of SOD1 can also be modulated by cellular oxygen tension. The elevated chromosome breakage correlates histologically with a significant increase in the amount of neuronal cell death in Ku86−/− SOD1 transgenic embryos over that seen in Ku86−/− embryos. Therefore, oxygen metabolism is a major source of the genomic instability observed in NHEJ-deficient cells and, presumably, in all cells.
doi_str_mv 10.1016/S0960-9822(02)00684-X
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_71499496</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S096098220200684X</els_id><sourcerecordid>18379914</sourcerecordid><originalsourceid>FETCH-LOGICAL-c491t-48487ba7d5b06c370fdc0012f8881c32b1ae936a872c3fac1001ebdc9f087b9a3</originalsourceid><addsrcrecordid>eNqFkc1u1DAURi1ERYfCI4C8QrAItRNPYq_QMOWnUtuRKEjdWY5zwxiSOPV1Cn0GXrpOZ1SWlSxZss_3XdmHkFecveeMl8eXTJUsUzLP37L8HWOlFNnVE7LgslIZE2L5lCwekEPyHPEXYzyXqnxGDjmX6VTxBfm3-Xv7EwZ6DtHUvnPY07WZEJCut8H3Hn0P9GMA8xupGRp6inSF6K0zERr6x8UtjVugFzAFP5iOrkY_Ro8O6aZGCDcJcgM9uVjREz_VHWSXMcw995X0G4zGBXo-RTNEfEEOWtMhvNzvR-TH50_f11-zs82X0_XqLLNC8ZgJKWRVm6pZ1qy0RcXaxs5Pa6WU3BZ5zQ2oojSyym3RGsvTJdSNVS1LOWWKI_Jm1zsGfz0BRt07tNB1ZgA_oa64UEqo8lGQy6JSiosELnegDR4xQKvH4HoTbjVnetal73Xp2YVmac269FXKvd4PmOoemv-pvZ8EfNgBkP7jxkHQaB0MFhoXwEbdePfIiDt6a6ZJ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>18379914</pqid></control><display><type>article</type><title>Oxygen Metabolism Causes Chromosome Breaks and Is Associated with the Neuronal Apoptosis Observed in DNA Double-Strand Break Repair Mutants</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><source>Cell Press Free Archives</source><source>EZB Electronic Journals Library</source><creator>Karanjawala, Zarir E. ; Murphy, Niamh ; Hinton, David R. ; Hsieh, Chih-Lin ; Lieber, Michael R.</creator><creatorcontrib>Karanjawala, Zarir E. ; Murphy, Niamh ; Hinton, David R. ; Hsieh, Chih-Lin ; Lieber, Michael R.</creatorcontrib><description>Cells deficient in a major DNA double-strand break repair pathway (nonhomologous DNA end joining [NHEJ]) have increased spontaneous chromosome breaks [1–3]; however, the source of these chromosome breaks has remained undefined. Here, we show that the observed spontaneous chromosome breaks are partially suppressed by reducing the cellular oxygen tension. Conversely, elevating the level of reactive oxygen species by overexpressing the antioxidant enzyme superoxide dismutase 1 (SOD1), in a transgenic mouse, increases chromosome breakage. The effect of SOD1 can also be modulated by cellular oxygen tension. The elevated chromosome breakage correlates histologically with a significant increase in the amount of neuronal cell death in Ku86−/− SOD1 transgenic embryos over that seen in Ku86−/− embryos. Therefore, oxygen metabolism is a major source of the genomic instability observed in NHEJ-deficient cells and, presumably, in all cells.</description><identifier>ISSN: 0960-9822</identifier><identifier>EISSN: 1879-0445</identifier><identifier>DOI: 10.1016/S0960-9822(02)00684-X</identifier><identifier>PMID: 11882291</identifier><language>eng</language><publisher>England: Elsevier Inc</publisher><subject>Animals ; Antigens, Nuclear ; Apoptosis ; Cells, Cultured ; Cerebral Cortex - cytology ; Cerebral Cortex - embryology ; Cerebral Cortex - metabolism ; Chromosome Breakage ; DNA Helicases ; DNA Repair - genetics ; DNA Repair - physiology ; DNA-Binding Proteins - deficiency ; DNA-Binding Proteins - genetics ; Embryonic and Fetal Development - genetics ; Humans ; Ku Autoantigen ; Mice ; Mice, Inbred C57BL ; Mice, Knockout ; Mice, Transgenic ; Mutation ; Neurons - cytology ; Neurons - metabolism ; Nuclear Proteins - deficiency ; Nuclear Proteins - genetics ; Oxygen - metabolism ; Reactive Oxygen Species - metabolism ; Superoxide Dismutase - genetics ; Superoxide Dismutase - metabolism ; Superoxide Dismutase-1</subject><ispartof>Current biology, 2002-03, Vol.12 (5), p.397-402</ispartof><rights>2002 Cell Press</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c491t-48487ba7d5b06c370fdc0012f8881c32b1ae936a872c3fac1001ebdc9f087b9a3</citedby><cites>FETCH-LOGICAL-c491t-48487ba7d5b06c370fdc0012f8881c32b1ae936a872c3fac1001ebdc9f087b9a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S096098220200684X$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/11882291$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Karanjawala, Zarir E.</creatorcontrib><creatorcontrib>Murphy, Niamh</creatorcontrib><creatorcontrib>Hinton, David R.</creatorcontrib><creatorcontrib>Hsieh, Chih-Lin</creatorcontrib><creatorcontrib>Lieber, Michael R.</creatorcontrib><title>Oxygen Metabolism Causes Chromosome Breaks and Is Associated with the Neuronal Apoptosis Observed in DNA Double-Strand Break Repair Mutants</title><title>Current biology</title><addtitle>Curr Biol</addtitle><description>Cells deficient in a major DNA double-strand break repair pathway (nonhomologous DNA end joining [NHEJ]) have increased spontaneous chromosome breaks [1–3]; however, the source of these chromosome breaks has remained undefined. Here, we show that the observed spontaneous chromosome breaks are partially suppressed by reducing the cellular oxygen tension. Conversely, elevating the level of reactive oxygen species by overexpressing the antioxidant enzyme superoxide dismutase 1 (SOD1), in a transgenic mouse, increases chromosome breakage. The effect of SOD1 can also be modulated by cellular oxygen tension. The elevated chromosome breakage correlates histologically with a significant increase in the amount of neuronal cell death in Ku86−/− SOD1 transgenic embryos over that seen in Ku86−/− embryos. Therefore, oxygen metabolism is a major source of the genomic instability observed in NHEJ-deficient cells and, presumably, in all cells.</description><subject>Animals</subject><subject>Antigens, Nuclear</subject><subject>Apoptosis</subject><subject>Cells, Cultured</subject><subject>Cerebral Cortex - cytology</subject><subject>Cerebral Cortex - embryology</subject><subject>Cerebral Cortex - metabolism</subject><subject>Chromosome Breakage</subject><subject>DNA Helicases</subject><subject>DNA Repair - genetics</subject><subject>DNA Repair - physiology</subject><subject>DNA-Binding Proteins - deficiency</subject><subject>DNA-Binding Proteins - genetics</subject><subject>Embryonic and Fetal Development - genetics</subject><subject>Humans</subject><subject>Ku Autoantigen</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Mice, Knockout</subject><subject>Mice, Transgenic</subject><subject>Mutation</subject><subject>Neurons - cytology</subject><subject>Neurons - metabolism</subject><subject>Nuclear Proteins - deficiency</subject><subject>Nuclear Proteins - genetics</subject><subject>Oxygen - metabolism</subject><subject>Reactive Oxygen Species - metabolism</subject><subject>Superoxide Dismutase - genetics</subject><subject>Superoxide Dismutase - metabolism</subject><subject>Superoxide Dismutase-1</subject><issn>0960-9822</issn><issn>1879-0445</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkc1u1DAURi1ERYfCI4C8QrAItRNPYq_QMOWnUtuRKEjdWY5zwxiSOPV1Cn0GXrpOZ1SWlSxZss_3XdmHkFecveeMl8eXTJUsUzLP37L8HWOlFNnVE7LgslIZE2L5lCwekEPyHPEXYzyXqnxGDjmX6VTxBfm3-Xv7EwZ6DtHUvnPY07WZEJCut8H3Hn0P9GMA8xupGRp6inSF6K0zERr6x8UtjVugFzAFP5iOrkY_Ro8O6aZGCDcJcgM9uVjREz_VHWSXMcw995X0G4zGBXo-RTNEfEEOWtMhvNzvR-TH50_f11-zs82X0_XqLLNC8ZgJKWRVm6pZ1qy0RcXaxs5Pa6WU3BZ5zQ2oojSyym3RGsvTJdSNVS1LOWWKI_Jm1zsGfz0BRt07tNB1ZgA_oa64UEqo8lGQy6JSiosELnegDR4xQKvH4HoTbjVnetal73Xp2YVmac269FXKvd4PmOoemv-pvZ8EfNgBkP7jxkHQaB0MFhoXwEbdePfIiDt6a6ZJ</recordid><startdate>20020305</startdate><enddate>20020305</enddate><creator>Karanjawala, Zarir E.</creator><creator>Murphy, Niamh</creator><creator>Hinton, David R.</creator><creator>Hsieh, Chih-Lin</creator><creator>Lieber, Michael R.</creator><general>Elsevier Inc</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TK</scope><scope>7TM</scope><scope>7X8</scope></search><sort><creationdate>20020305</creationdate><title>Oxygen Metabolism Causes Chromosome Breaks and Is Associated with the Neuronal Apoptosis Observed in DNA Double-Strand Break Repair Mutants</title><author>Karanjawala, Zarir E. ; Murphy, Niamh ; Hinton, David R. ; Hsieh, Chih-Lin ; Lieber, Michael R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c491t-48487ba7d5b06c370fdc0012f8881c32b1ae936a872c3fac1001ebdc9f087b9a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Animals</topic><topic>Antigens, Nuclear</topic><topic>Apoptosis</topic><topic>Cells, Cultured</topic><topic>Cerebral Cortex - cytology</topic><topic>Cerebral Cortex - embryology</topic><topic>Cerebral Cortex - metabolism</topic><topic>Chromosome Breakage</topic><topic>DNA Helicases</topic><topic>DNA Repair - genetics</topic><topic>DNA Repair - physiology</topic><topic>DNA-Binding Proteins - deficiency</topic><topic>DNA-Binding Proteins - genetics</topic><topic>Embryonic and Fetal Development - genetics</topic><topic>Humans</topic><topic>Ku Autoantigen</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Mice, Knockout</topic><topic>Mice, Transgenic</topic><topic>Mutation</topic><topic>Neurons - cytology</topic><topic>Neurons - metabolism</topic><topic>Nuclear Proteins - deficiency</topic><topic>Nuclear Proteins - genetics</topic><topic>Oxygen - metabolism</topic><topic>Reactive Oxygen Species - metabolism</topic><topic>Superoxide Dismutase - genetics</topic><topic>Superoxide Dismutase - metabolism</topic><topic>Superoxide Dismutase-1</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Karanjawala, Zarir E.</creatorcontrib><creatorcontrib>Murphy, Niamh</creatorcontrib><creatorcontrib>Hinton, David R.</creatorcontrib><creatorcontrib>Hsieh, Chih-Lin</creatorcontrib><creatorcontrib>Lieber, Michael R.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Current biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Karanjawala, Zarir E.</au><au>Murphy, Niamh</au><au>Hinton, David R.</au><au>Hsieh, Chih-Lin</au><au>Lieber, Michael R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Oxygen Metabolism Causes Chromosome Breaks and Is Associated with the Neuronal Apoptosis Observed in DNA Double-Strand Break Repair Mutants</atitle><jtitle>Current biology</jtitle><addtitle>Curr Biol</addtitle><date>2002-03-05</date><risdate>2002</risdate><volume>12</volume><issue>5</issue><spage>397</spage><epage>402</epage><pages>397-402</pages><issn>0960-9822</issn><eissn>1879-0445</eissn><abstract>Cells deficient in a major DNA double-strand break repair pathway (nonhomologous DNA end joining [NHEJ]) have increased spontaneous chromosome breaks [1–3]; however, the source of these chromosome breaks has remained undefined. Here, we show that the observed spontaneous chromosome breaks are partially suppressed by reducing the cellular oxygen tension. Conversely, elevating the level of reactive oxygen species by overexpressing the antioxidant enzyme superoxide dismutase 1 (SOD1), in a transgenic mouse, increases chromosome breakage. The effect of SOD1 can also be modulated by cellular oxygen tension. The elevated chromosome breakage correlates histologically with a significant increase in the amount of neuronal cell death in Ku86−/− SOD1 transgenic embryos over that seen in Ku86−/− embryos. Therefore, oxygen metabolism is a major source of the genomic instability observed in NHEJ-deficient cells and, presumably, in all cells.</abstract><cop>England</cop><pub>Elsevier Inc</pub><pmid>11882291</pmid><doi>10.1016/S0960-9822(02)00684-X</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0960-9822
ispartof Current biology, 2002-03, Vol.12 (5), p.397-402
issn 0960-9822
1879-0445
language eng
recordid cdi_proquest_miscellaneous_71499496
source MEDLINE; Elsevier ScienceDirect Journals Complete; Cell Press Free Archives; EZB Electronic Journals Library
subjects Animals
Antigens, Nuclear
Apoptosis
Cells, Cultured
Cerebral Cortex - cytology
Cerebral Cortex - embryology
Cerebral Cortex - metabolism
Chromosome Breakage
DNA Helicases
DNA Repair - genetics
DNA Repair - physiology
DNA-Binding Proteins - deficiency
DNA-Binding Proteins - genetics
Embryonic and Fetal Development - genetics
Humans
Ku Autoantigen
Mice
Mice, Inbred C57BL
Mice, Knockout
Mice, Transgenic
Mutation
Neurons - cytology
Neurons - metabolism
Nuclear Proteins - deficiency
Nuclear Proteins - genetics
Oxygen - metabolism
Reactive Oxygen Species - metabolism
Superoxide Dismutase - genetics
Superoxide Dismutase - metabolism
Superoxide Dismutase-1
title Oxygen Metabolism Causes Chromosome Breaks and Is Associated with the Neuronal Apoptosis Observed in DNA Double-Strand Break Repair Mutants
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T21%3A38%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Oxygen%20Metabolism%20Causes%20Chromosome%20Breaks%20and%20Is%20Associated%20with%20the%20Neuronal%20Apoptosis%20Observed%20in%20DNA%20Double-Strand%20Break%20Repair%20Mutants&rft.jtitle=Current%20biology&rft.au=Karanjawala,%20Zarir%20E.&rft.date=2002-03-05&rft.volume=12&rft.issue=5&rft.spage=397&rft.epage=402&rft.pages=397-402&rft.issn=0960-9822&rft.eissn=1879-0445&rft_id=info:doi/10.1016/S0960-9822(02)00684-X&rft_dat=%3Cproquest_cross%3E18379914%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=18379914&rft_id=info:pmid/11882291&rft_els_id=S096098220200684X&rfr_iscdi=true