Membrane Tube Formation from Giant Vesicles by Dynamic Association of Motor Proteins
The tubular morphology of intracellular membranous compartments is actively maintained through interactions with motor proteins and the cytoskeleton. Moving along cytoskeletal elements, motor proteins exert forces on the membranes to which they are attached, resulting in the formation of membrane tu...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2003-12, Vol.100 (26), p.15583-15588 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 15588 |
---|---|
container_issue | 26 |
container_start_page | 15583 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 100 |
creator | Koster, Gerbrand VanDuijn, Martijn Hofs, Bas Dogterom, Marileen |
description | The tubular morphology of intracellular membranous compartments is actively maintained through interactions with motor proteins and the cytoskeleton. Moving along cytoskeletal elements, motor proteins exert forces on the membranes to which they are attached, resulting in the formation of membrane tubes and tubular networks. To study the formation of membrane tubes by motor proteins, we developed an in vitro assay consisting of purified kinesin proteins directly linked to the lipids of giant unilamellar vesicles. When the vesicles are brought into contact with a network of immobilized microtubules, membrane tubes and tubular networks are formed. Through systematic variation of the kinesin concentration and membrane composition we study the mechanism involved. We show that a threshold concentration of motor proteins is needed and that a low membrane tension facilitates tube formation. Forces involved in tube formation were measured directly with optical tweezers and are shown to depend only on the tension and bending rigidity of the membrane. The forces were found to be higher than can be generated by individual motor proteins, indicating that multiple motors were working together to pull tubes. We propose a simple mechanism by which individual motor proteins can dynamically associate into clusters that provide the force needed for the formation of tubes, explaining why, in contrast to earlier findings [Roux, A., Cappello, G., Cartaud, J., Prost, J., Goud, B. & Bassereau, P. (2002) Proc. Natl. Acad. Sci. USA 99, 5394-5399], motor proteins do not need to be physically linked to each other to be able to pull tubes. |
doi_str_mv | 10.1073/pnas.2531786100 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_71487551</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>3149049</jstor_id><sourcerecordid>3149049</sourcerecordid><originalsourceid>FETCH-LOGICAL-c561t-4e63bff9b84838f30c097f8ba645fc52f07b7a8d093a3c67de0e324e1c10db783</originalsourceid><addsrcrecordid>eNqF0c1vFCEYBnBiNHZbPXsxhnho4mHal4EB5uChqbaatNHD6pUAC8pmBlaYMe5_L5vddNWLJw78npePB6EXBC4ICHq5ibpctB0lQnIC8AgtCPSk4ayHx2gB0IpGspadoNNS1gDQdxKeohPCOKeE0QVa3rvRZB0dXs7G4ZuURz2FFLHPacS3QccJf3Ul2MEVbLb43TbqMVh8VUqyYU-Tx_dpShl_zmlyIZZn6InXQ3HPD-sZ-nLzfnn9obn7dPvx-uqusR0nU8Mcp8b73kgmqfQULPTCS6M567ztWg_CCC1X0FNNLRcrB462zBFLYGWEpGfo7X7uZjajW1kXp6wHtclh1Hmrkg7q750Yvqtv6aeiIDghNX9-yOf0Y3ZlUmMo1g1D_Y80FyUIk6LrdvD1P3Cd5hzr21QLhNK2Fbyiyz2yOZWSnX-4CAG1a0vt2lLHtmri1Z_3P_pDPRW8OYBd8jgOVMsV6TpJlZ-HYXK_pmrxf2wlL_dkXWpdD6Ye1QPr6W9BQbM3</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>201332276</pqid></control><display><type>article</type><title>Membrane Tube Formation from Giant Vesicles by Dynamic Association of Motor Proteins</title><source>Jstor Complete Legacy</source><source>MEDLINE</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Koster, Gerbrand ; VanDuijn, Martijn ; Hofs, Bas ; Dogterom, Marileen</creator><creatorcontrib>Koster, Gerbrand ; VanDuijn, Martijn ; Hofs, Bas ; Dogterom, Marileen</creatorcontrib><description>The tubular morphology of intracellular membranous compartments is actively maintained through interactions with motor proteins and the cytoskeleton. Moving along cytoskeletal elements, motor proteins exert forces on the membranes to which they are attached, resulting in the formation of membrane tubes and tubular networks. To study the formation of membrane tubes by motor proteins, we developed an in vitro assay consisting of purified kinesin proteins directly linked to the lipids of giant unilamellar vesicles. When the vesicles are brought into contact with a network of immobilized microtubules, membrane tubes and tubular networks are formed. Through systematic variation of the kinesin concentration and membrane composition we study the mechanism involved. We show that a threshold concentration of motor proteins is needed and that a low membrane tension facilitates tube formation. Forces involved in tube formation were measured directly with optical tweezers and are shown to depend only on the tension and bending rigidity of the membrane. The forces were found to be higher than can be generated by individual motor proteins, indicating that multiple motors were working together to pull tubes. We propose a simple mechanism by which individual motor proteins can dynamically associate into clusters that provide the force needed for the formation of tubes, explaining why, in contrast to earlier findings [Roux, A., Cappello, G., Cartaud, J., Prost, J., Goud, B. & Bassereau, P. (2002) Proc. Natl. Acad. Sci. USA 99, 5394-5399], motor proteins do not need to be physically linked to each other to be able to pull tubes.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.2531786100</identifier><identifier>PMID: 14663143</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Bending ; Biological Sciences ; Cell Membrane - ultrastructure ; Cellular biology ; Cholesterols ; Cytoskeleton ; Cytoskeleton - physiology ; Cytoskeleton - ultrastructure ; Intracellular membranes ; Lipid Bilayers - chemistry ; Lipids ; Membranes ; Models, Biological ; Motors ; Nuclear membrane ; Organelles - ultrastructure ; P branes ; Proteins ; Roux ; Stress, Mechanical ; Tubulin - chemistry ; Tubulin - ultrastructure ; Tweezers</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2003-12, Vol.100 (26), p.15583-15588</ispartof><rights>Copyright 1993-2003 National Academy of Sciences of the United States of America</rights><rights>Copyright National Academy of Sciences Dec 23, 2003</rights><rights>Copyright © 2003, The National Academy of Sciences 2003</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c561t-4e63bff9b84838f30c097f8ba645fc52f07b7a8d093a3c67de0e324e1c10db783</citedby><cites>FETCH-LOGICAL-c561t-4e63bff9b84838f30c097f8ba645fc52f07b7a8d093a3c67de0e324e1c10db783</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/100/26.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/3149049$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/3149049$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,723,776,780,799,881,27901,27902,53766,53768,57992,58225</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/14663143$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Koster, Gerbrand</creatorcontrib><creatorcontrib>VanDuijn, Martijn</creatorcontrib><creatorcontrib>Hofs, Bas</creatorcontrib><creatorcontrib>Dogterom, Marileen</creatorcontrib><title>Membrane Tube Formation from Giant Vesicles by Dynamic Association of Motor Proteins</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>The tubular morphology of intracellular membranous compartments is actively maintained through interactions with motor proteins and the cytoskeleton. Moving along cytoskeletal elements, motor proteins exert forces on the membranes to which they are attached, resulting in the formation of membrane tubes and tubular networks. To study the formation of membrane tubes by motor proteins, we developed an in vitro assay consisting of purified kinesin proteins directly linked to the lipids of giant unilamellar vesicles. When the vesicles are brought into contact with a network of immobilized microtubules, membrane tubes and tubular networks are formed. Through systematic variation of the kinesin concentration and membrane composition we study the mechanism involved. We show that a threshold concentration of motor proteins is needed and that a low membrane tension facilitates tube formation. Forces involved in tube formation were measured directly with optical tweezers and are shown to depend only on the tension and bending rigidity of the membrane. The forces were found to be higher than can be generated by individual motor proteins, indicating that multiple motors were working together to pull tubes. We propose a simple mechanism by which individual motor proteins can dynamically associate into clusters that provide the force needed for the formation of tubes, explaining why, in contrast to earlier findings [Roux, A., Cappello, G., Cartaud, J., Prost, J., Goud, B. & Bassereau, P. (2002) Proc. Natl. Acad. Sci. USA 99, 5394-5399], motor proteins do not need to be physically linked to each other to be able to pull tubes.</description><subject>Bending</subject><subject>Biological Sciences</subject><subject>Cell Membrane - ultrastructure</subject><subject>Cellular biology</subject><subject>Cholesterols</subject><subject>Cytoskeleton</subject><subject>Cytoskeleton - physiology</subject><subject>Cytoskeleton - ultrastructure</subject><subject>Intracellular membranes</subject><subject>Lipid Bilayers - chemistry</subject><subject>Lipids</subject><subject>Membranes</subject><subject>Models, Biological</subject><subject>Motors</subject><subject>Nuclear membrane</subject><subject>Organelles - ultrastructure</subject><subject>P branes</subject><subject>Proteins</subject><subject>Roux</subject><subject>Stress, Mechanical</subject><subject>Tubulin - chemistry</subject><subject>Tubulin - ultrastructure</subject><subject>Tweezers</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqF0c1vFCEYBnBiNHZbPXsxhnho4mHal4EB5uChqbaatNHD6pUAC8pmBlaYMe5_L5vddNWLJw78npePB6EXBC4ICHq5ibpctB0lQnIC8AgtCPSk4ayHx2gB0IpGspadoNNS1gDQdxKeohPCOKeE0QVa3rvRZB0dXs7G4ZuURz2FFLHPacS3QccJf3Ul2MEVbLb43TbqMVh8VUqyYU-Tx_dpShl_zmlyIZZn6InXQ3HPD-sZ-nLzfnn9obn7dPvx-uqusR0nU8Mcp8b73kgmqfQULPTCS6M567ztWg_CCC1X0FNNLRcrB462zBFLYGWEpGfo7X7uZjajW1kXp6wHtclh1Hmrkg7q750Yvqtv6aeiIDghNX9-yOf0Y3ZlUmMo1g1D_Y80FyUIk6LrdvD1P3Cd5hzr21QLhNK2Fbyiyz2yOZWSnX-4CAG1a0vt2lLHtmri1Z_3P_pDPRW8OYBd8jgOVMsV6TpJlZ-HYXK_pmrxf2wlL_dkXWpdD6Ye1QPr6W9BQbM3</recordid><startdate>20031223</startdate><enddate>20031223</enddate><creator>Koster, Gerbrand</creator><creator>VanDuijn, Martijn</creator><creator>Hofs, Bas</creator><creator>Dogterom, Marileen</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20031223</creationdate><title>Membrane Tube Formation from Giant Vesicles by Dynamic Association of Motor Proteins</title><author>Koster, Gerbrand ; VanDuijn, Martijn ; Hofs, Bas ; Dogterom, Marileen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c561t-4e63bff9b84838f30c097f8ba645fc52f07b7a8d093a3c67de0e324e1c10db783</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Bending</topic><topic>Biological Sciences</topic><topic>Cell Membrane - ultrastructure</topic><topic>Cellular biology</topic><topic>Cholesterols</topic><topic>Cytoskeleton</topic><topic>Cytoskeleton - physiology</topic><topic>Cytoskeleton - ultrastructure</topic><topic>Intracellular membranes</topic><topic>Lipid Bilayers - chemistry</topic><topic>Lipids</topic><topic>Membranes</topic><topic>Models, Biological</topic><topic>Motors</topic><topic>Nuclear membrane</topic><topic>Organelles - ultrastructure</topic><topic>P branes</topic><topic>Proteins</topic><topic>Roux</topic><topic>Stress, Mechanical</topic><topic>Tubulin - chemistry</topic><topic>Tubulin - ultrastructure</topic><topic>Tweezers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Koster, Gerbrand</creatorcontrib><creatorcontrib>VanDuijn, Martijn</creatorcontrib><creatorcontrib>Hofs, Bas</creatorcontrib><creatorcontrib>Dogterom, Marileen</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Koster, Gerbrand</au><au>VanDuijn, Martijn</au><au>Hofs, Bas</au><au>Dogterom, Marileen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Membrane Tube Formation from Giant Vesicles by Dynamic Association of Motor Proteins</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2003-12-23</date><risdate>2003</risdate><volume>100</volume><issue>26</issue><spage>15583</spage><epage>15588</epage><pages>15583-15588</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>The tubular morphology of intracellular membranous compartments is actively maintained through interactions with motor proteins and the cytoskeleton. Moving along cytoskeletal elements, motor proteins exert forces on the membranes to which they are attached, resulting in the formation of membrane tubes and tubular networks. To study the formation of membrane tubes by motor proteins, we developed an in vitro assay consisting of purified kinesin proteins directly linked to the lipids of giant unilamellar vesicles. When the vesicles are brought into contact with a network of immobilized microtubules, membrane tubes and tubular networks are formed. Through systematic variation of the kinesin concentration and membrane composition we study the mechanism involved. We show that a threshold concentration of motor proteins is needed and that a low membrane tension facilitates tube formation. Forces involved in tube formation were measured directly with optical tweezers and are shown to depend only on the tension and bending rigidity of the membrane. The forces were found to be higher than can be generated by individual motor proteins, indicating that multiple motors were working together to pull tubes. We propose a simple mechanism by which individual motor proteins can dynamically associate into clusters that provide the force needed for the formation of tubes, explaining why, in contrast to earlier findings [Roux, A., Cappello, G., Cartaud, J., Prost, J., Goud, B. & Bassereau, P. (2002) Proc. Natl. Acad. Sci. USA 99, 5394-5399], motor proteins do not need to be physically linked to each other to be able to pull tubes.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>14663143</pmid><doi>10.1073/pnas.2531786100</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2003-12, Vol.100 (26), p.15583-15588 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_proquest_miscellaneous_71487551 |
source | Jstor Complete Legacy; MEDLINE; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Bending Biological Sciences Cell Membrane - ultrastructure Cellular biology Cholesterols Cytoskeleton Cytoskeleton - physiology Cytoskeleton - ultrastructure Intracellular membranes Lipid Bilayers - chemistry Lipids Membranes Models, Biological Motors Nuclear membrane Organelles - ultrastructure P branes Proteins Roux Stress, Mechanical Tubulin - chemistry Tubulin - ultrastructure Tweezers |
title | Membrane Tube Formation from Giant Vesicles by Dynamic Association of Motor Proteins |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T02%3A31%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Membrane%20Tube%20Formation%20from%20Giant%20Vesicles%20by%20Dynamic%20Association%20of%20Motor%20Proteins&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Koster,%20Gerbrand&rft.date=2003-12-23&rft.volume=100&rft.issue=26&rft.spage=15583&rft.epage=15588&rft.pages=15583-15588&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.2531786100&rft_dat=%3Cjstor_proqu%3E3149049%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=201332276&rft_id=info:pmid/14663143&rft_jstor_id=3149049&rfr_iscdi=true |