Effect of cardiac vagal outflow on complexity and fractal correlation properties of heart rate dynamics

Summary 1 Cardiac vagal outflow is the major factor determining the magnitude of heart rate (HR) variability analysed by traditional time and frequency domain methods. New analysis techniques, such as fractal and complexity methods, have been developed to probe non‐linear features in HR behaviour th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Autonomic & autacoid pharmacology 2003-06, Vol.23 (3), p.173-179
Hauptverfasser: Penttilä, J., Helminen, A., Jartti, T., Kuusela, T., Huikuri, H. V., Tulppo, M. P., Scheinin, H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 179
container_issue 3
container_start_page 173
container_title Autonomic & autacoid pharmacology
container_volume 23
creator Penttilä, J.
Helminen, A.
Jartti, T.
Kuusela, T.
Huikuri, H. V.
Tulppo, M. P.
Scheinin, H.
description Summary 1 Cardiac vagal outflow is the major factor determining the magnitude of heart rate (HR) variability analysed by traditional time and frequency domain methods. New analysis techniques, such as fractal and complexity methods, have been developed to probe non‐linear features in HR behaviour that may not be detectable by traditional methods. 2 We investigated the effects of vagal blockade (glycopyrrolate i.v. 5 μg kg−1 h−1 for 2 h, n = 8 vs. unmedicated control group, n = 8) and various breathing patterns (n = 12) on two non‐linear measures of HR variability – detrended fluctuation analysis (DFA) and approximate entropy (ApEn) – in healthy male volunteers. 3 Glycopyrrolate decreased the mean (±SD) ApEn from 1.46 ± 0.18 to 0.85 ± 0.24 (P = 0.001 in comparison with the control group), and increased the short‐term (α1) and intermediate‐term (α2) fractal scaling exponents of DFA, α1 from 0.96 ± 0.19 to 1.43 ± 0.29 (P = 0.003) and α2 from 1.13 ± 0.10 to 1.34 ± 0.14 (P 
doi_str_mv 10.1046/j.1474-8673.2003.00293.x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_71475734</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>71475734</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3833-51f0544080e38162bf61cb2b3247ff9d5d807e9c66d1bda0be629c618b1a63183</originalsourceid><addsrcrecordid>eNqNkF1v2yAUhlG1qU0__sLE1e7sgsHYlnaTRV1aqdoqtVUvEcaHjswOGZAl-ffFS5Te9oqDeJ_3oAchTElOCRfXi5zyime1qFheEMJyQoqG5dsTNDk-fDrOojxD5yEsCKEV4-UpOqNcNIQ3xQS93hgDOmJnsFa-s0rjf-pV9dito-ndBrsl1m5Y9bC1cYfVssPGKx1TQjvvoVfRpsjKuxX4aCGMTb9B-Yi9ioC73VINVodL9NmoPsDV4bxAzz9unma32f2v-d1sep9pVjOWldSQknNSE2A1FUVrBNVt0bKCV8Y0XdnVpIJGC9HRtlOkBVGkG61bqgSjNbtAX_e96Ud_1xCiHGzQ0PdqCW4dZJWclMlCCtb7oPYuBA9GrrwdlN9JSuQoWS7k6E-OLuUoWf6XLLcJ_XLYsW4H6N7Bg9UU-LYPbGwPuw8Xy-n0IQ0Jz_a4DRG2R1z5PzIhVSlffs7l98enRpDbBLM3WXOakQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>71475734</pqid></control><display><type>article</type><title>Effect of cardiac vagal outflow on complexity and fractal correlation properties of heart rate dynamics</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Penttilä, J. ; Helminen, A. ; Jartti, T. ; Kuusela, T. ; Huikuri, H. V. ; Tulppo, M. P. ; Scheinin, H.</creator><creatorcontrib>Penttilä, J. ; Helminen, A. ; Jartti, T. ; Kuusela, T. ; Huikuri, H. V. ; Tulppo, M. P. ; Scheinin, H.</creatorcontrib><description>Summary 1 Cardiac vagal outflow is the major factor determining the magnitude of heart rate (HR) variability analysed by traditional time and frequency domain methods. New analysis techniques, such as fractal and complexity methods, have been developed to probe non‐linear features in HR behaviour that may not be detectable by traditional methods. 2 We investigated the effects of vagal blockade (glycopyrrolate i.v. 5 μg kg−1 h−1 for 2 h, n = 8 vs. unmedicated control group, n = 8) and various breathing patterns (n = 12) on two non‐linear measures of HR variability – detrended fluctuation analysis (DFA) and approximate entropy (ApEn) – in healthy male volunteers. 3 Glycopyrrolate decreased the mean (±SD) ApEn from 1.46 ± 0.18 to 0.85 ± 0.24 (P = 0.001 in comparison with the control group), and increased the short‐term (α1) and intermediate‐term (α2) fractal scaling exponents of DFA, α1 from 0.96 ± 0.19 to 1.43 ± 0.29 (P = 0.003) and α2 from 1.13 ± 0.10 to 1.34 ± 0.14 (P &lt; 0.001). 4 Decrease in fixed respiration rate from 15 to 6 breaths min−1 increased α1 from 0.83 ± 0.25 to 1.18 ± 0.27 (P &lt; 0.001), but decreased α2 from 0.88 ± 0.09 to 0.45 ± 0.17 (P &lt; 0.001) and ApEn from 1.26 ± 0.12 to 1.10 ± 0.14 (P = 0.028). Rapid breathing (24 min−1) had no influence on these non‐linear measures of HR variability. Hyperventilation (15 min−1, tidal volume increased voluntarily by 0.5 l) decreased α1 from 0.83 ± 0.25 to 0.66 ± 0.28 (P = 0.002) but did not affect α2 or ApEn. 5 To conclude, vagal blockade alters the fractal scaling properties of R‐R intervals (α1, α2) and reduces the complexity (ApEn) of HR behaviour. Both the fractal and complexity measures of HR variability can also be influenced by changes in the breathing pattern.</description><identifier>ISSN: 1474-8665</identifier><identifier>EISSN: 1474-8673</identifier><identifier>DOI: 10.1046/j.1474-8673.2003.00293.x</identifier><identifier>PMID: 14690492</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Science Ltd</publisher><subject>Adolescent ; Adult ; autonomic nervous system ; Electrocardiography, Ambulatory ; Entropy ; Fractals ; Glycopyrrolate - pharmacology ; Heart - drug effects ; Heart - innervation ; Heart - physiology ; Heart Rate - drug effects ; Heart Rate - physiology ; heart rate variability ; Humans ; Hyperventilation - physiopathology ; Male ; muscarinic antagonists ; Muscarinic Antagonists - pharmacology ; Parasympathetic Nervous System - drug effects ; Respiratory Mechanics - drug effects ; Tidal Volume - drug effects ; Vagus Nerve - physiology</subject><ispartof>Autonomic &amp; autacoid pharmacology, 2003-06, Vol.23 (3), p.173-179</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3833-51f0544080e38162bf61cb2b3247ff9d5d807e9c66d1bda0be629c618b1a63183</citedby><cites>FETCH-LOGICAL-c3833-51f0544080e38162bf61cb2b3247ff9d5d807e9c66d1bda0be629c618b1a63183</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1046%2Fj.1474-8673.2003.00293.x$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1046%2Fj.1474-8673.2003.00293.x$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/14690492$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Penttilä, J.</creatorcontrib><creatorcontrib>Helminen, A.</creatorcontrib><creatorcontrib>Jartti, T.</creatorcontrib><creatorcontrib>Kuusela, T.</creatorcontrib><creatorcontrib>Huikuri, H. V.</creatorcontrib><creatorcontrib>Tulppo, M. P.</creatorcontrib><creatorcontrib>Scheinin, H.</creatorcontrib><title>Effect of cardiac vagal outflow on complexity and fractal correlation properties of heart rate dynamics</title><title>Autonomic &amp; autacoid pharmacology</title><addtitle>Auton Autacoid Pharmacol</addtitle><description>Summary 1 Cardiac vagal outflow is the major factor determining the magnitude of heart rate (HR) variability analysed by traditional time and frequency domain methods. New analysis techniques, such as fractal and complexity methods, have been developed to probe non‐linear features in HR behaviour that may not be detectable by traditional methods. 2 We investigated the effects of vagal blockade (glycopyrrolate i.v. 5 μg kg−1 h−1 for 2 h, n = 8 vs. unmedicated control group, n = 8) and various breathing patterns (n = 12) on two non‐linear measures of HR variability – detrended fluctuation analysis (DFA) and approximate entropy (ApEn) – in healthy male volunteers. 3 Glycopyrrolate decreased the mean (±SD) ApEn from 1.46 ± 0.18 to 0.85 ± 0.24 (P = 0.001 in comparison with the control group), and increased the short‐term (α1) and intermediate‐term (α2) fractal scaling exponents of DFA, α1 from 0.96 ± 0.19 to 1.43 ± 0.29 (P = 0.003) and α2 from 1.13 ± 0.10 to 1.34 ± 0.14 (P &lt; 0.001). 4 Decrease in fixed respiration rate from 15 to 6 breaths min−1 increased α1 from 0.83 ± 0.25 to 1.18 ± 0.27 (P &lt; 0.001), but decreased α2 from 0.88 ± 0.09 to 0.45 ± 0.17 (P &lt; 0.001) and ApEn from 1.26 ± 0.12 to 1.10 ± 0.14 (P = 0.028). Rapid breathing (24 min−1) had no influence on these non‐linear measures of HR variability. Hyperventilation (15 min−1, tidal volume increased voluntarily by 0.5 l) decreased α1 from 0.83 ± 0.25 to 0.66 ± 0.28 (P = 0.002) but did not affect α2 or ApEn. 5 To conclude, vagal blockade alters the fractal scaling properties of R‐R intervals (α1, α2) and reduces the complexity (ApEn) of HR behaviour. Both the fractal and complexity measures of HR variability can also be influenced by changes in the breathing pattern.</description><subject>Adolescent</subject><subject>Adult</subject><subject>autonomic nervous system</subject><subject>Electrocardiography, Ambulatory</subject><subject>Entropy</subject><subject>Fractals</subject><subject>Glycopyrrolate - pharmacology</subject><subject>Heart - drug effects</subject><subject>Heart - innervation</subject><subject>Heart - physiology</subject><subject>Heart Rate - drug effects</subject><subject>Heart Rate - physiology</subject><subject>heart rate variability</subject><subject>Humans</subject><subject>Hyperventilation - physiopathology</subject><subject>Male</subject><subject>muscarinic antagonists</subject><subject>Muscarinic Antagonists - pharmacology</subject><subject>Parasympathetic Nervous System - drug effects</subject><subject>Respiratory Mechanics - drug effects</subject><subject>Tidal Volume - drug effects</subject><subject>Vagus Nerve - physiology</subject><issn>1474-8665</issn><issn>1474-8673</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkF1v2yAUhlG1qU0__sLE1e7sgsHYlnaTRV1aqdoqtVUvEcaHjswOGZAl-ffFS5Te9oqDeJ_3oAchTElOCRfXi5zyime1qFheEMJyQoqG5dsTNDk-fDrOojxD5yEsCKEV4-UpOqNcNIQ3xQS93hgDOmJnsFa-s0rjf-pV9dito-ndBrsl1m5Y9bC1cYfVssPGKx1TQjvvoVfRpsjKuxX4aCGMTb9B-Yi9ioC73VINVodL9NmoPsDV4bxAzz9unma32f2v-d1sep9pVjOWldSQknNSE2A1FUVrBNVt0bKCV8Y0XdnVpIJGC9HRtlOkBVGkG61bqgSjNbtAX_e96Ud_1xCiHGzQ0PdqCW4dZJWclMlCCtb7oPYuBA9GrrwdlN9JSuQoWS7k6E-OLuUoWf6XLLcJ_XLYsW4H6N7Bg9UU-LYPbGwPuw8Xy-n0IQ0Jz_a4DRG2R1z5PzIhVSlffs7l98enRpDbBLM3WXOakQ</recordid><startdate>200306</startdate><enddate>200306</enddate><creator>Penttilä, J.</creator><creator>Helminen, A.</creator><creator>Jartti, T.</creator><creator>Kuusela, T.</creator><creator>Huikuri, H. V.</creator><creator>Tulppo, M. P.</creator><creator>Scheinin, H.</creator><general>Blackwell Science Ltd</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>200306</creationdate><title>Effect of cardiac vagal outflow on complexity and fractal correlation properties of heart rate dynamics</title><author>Penttilä, J. ; Helminen, A. ; Jartti, T. ; Kuusela, T. ; Huikuri, H. V. ; Tulppo, M. P. ; Scheinin, H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3833-51f0544080e38162bf61cb2b3247ff9d5d807e9c66d1bda0be629c618b1a63183</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Adolescent</topic><topic>Adult</topic><topic>autonomic nervous system</topic><topic>Electrocardiography, Ambulatory</topic><topic>Entropy</topic><topic>Fractals</topic><topic>Glycopyrrolate - pharmacology</topic><topic>Heart - drug effects</topic><topic>Heart - innervation</topic><topic>Heart - physiology</topic><topic>Heart Rate - drug effects</topic><topic>Heart Rate - physiology</topic><topic>heart rate variability</topic><topic>Humans</topic><topic>Hyperventilation - physiopathology</topic><topic>Male</topic><topic>muscarinic antagonists</topic><topic>Muscarinic Antagonists - pharmacology</topic><topic>Parasympathetic Nervous System - drug effects</topic><topic>Respiratory Mechanics - drug effects</topic><topic>Tidal Volume - drug effects</topic><topic>Vagus Nerve - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Penttilä, J.</creatorcontrib><creatorcontrib>Helminen, A.</creatorcontrib><creatorcontrib>Jartti, T.</creatorcontrib><creatorcontrib>Kuusela, T.</creatorcontrib><creatorcontrib>Huikuri, H. V.</creatorcontrib><creatorcontrib>Tulppo, M. P.</creatorcontrib><creatorcontrib>Scheinin, H.</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Autonomic &amp; autacoid pharmacology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Penttilä, J.</au><au>Helminen, A.</au><au>Jartti, T.</au><au>Kuusela, T.</au><au>Huikuri, H. V.</au><au>Tulppo, M. P.</au><au>Scheinin, H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effect of cardiac vagal outflow on complexity and fractal correlation properties of heart rate dynamics</atitle><jtitle>Autonomic &amp; autacoid pharmacology</jtitle><addtitle>Auton Autacoid Pharmacol</addtitle><date>2003-06</date><risdate>2003</risdate><volume>23</volume><issue>3</issue><spage>173</spage><epage>179</epage><pages>173-179</pages><issn>1474-8665</issn><eissn>1474-8673</eissn><abstract>Summary 1 Cardiac vagal outflow is the major factor determining the magnitude of heart rate (HR) variability analysed by traditional time and frequency domain methods. New analysis techniques, such as fractal and complexity methods, have been developed to probe non‐linear features in HR behaviour that may not be detectable by traditional methods. 2 We investigated the effects of vagal blockade (glycopyrrolate i.v. 5 μg kg−1 h−1 for 2 h, n = 8 vs. unmedicated control group, n = 8) and various breathing patterns (n = 12) on two non‐linear measures of HR variability – detrended fluctuation analysis (DFA) and approximate entropy (ApEn) – in healthy male volunteers. 3 Glycopyrrolate decreased the mean (±SD) ApEn from 1.46 ± 0.18 to 0.85 ± 0.24 (P = 0.001 in comparison with the control group), and increased the short‐term (α1) and intermediate‐term (α2) fractal scaling exponents of DFA, α1 from 0.96 ± 0.19 to 1.43 ± 0.29 (P = 0.003) and α2 from 1.13 ± 0.10 to 1.34 ± 0.14 (P &lt; 0.001). 4 Decrease in fixed respiration rate from 15 to 6 breaths min−1 increased α1 from 0.83 ± 0.25 to 1.18 ± 0.27 (P &lt; 0.001), but decreased α2 from 0.88 ± 0.09 to 0.45 ± 0.17 (P &lt; 0.001) and ApEn from 1.26 ± 0.12 to 1.10 ± 0.14 (P = 0.028). Rapid breathing (24 min−1) had no influence on these non‐linear measures of HR variability. Hyperventilation (15 min−1, tidal volume increased voluntarily by 0.5 l) decreased α1 from 0.83 ± 0.25 to 0.66 ± 0.28 (P = 0.002) but did not affect α2 or ApEn. 5 To conclude, vagal blockade alters the fractal scaling properties of R‐R intervals (α1, α2) and reduces the complexity (ApEn) of HR behaviour. Both the fractal and complexity measures of HR variability can also be influenced by changes in the breathing pattern.</abstract><cop>Oxford, UK</cop><pub>Blackwell Science Ltd</pub><pmid>14690492</pmid><doi>10.1046/j.1474-8673.2003.00293.x</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1474-8665
ispartof Autonomic & autacoid pharmacology, 2003-06, Vol.23 (3), p.173-179
issn 1474-8665
1474-8673
language eng
recordid cdi_proquest_miscellaneous_71475734
source MEDLINE; Wiley Online Library Journals Frontfile Complete
subjects Adolescent
Adult
autonomic nervous system
Electrocardiography, Ambulatory
Entropy
Fractals
Glycopyrrolate - pharmacology
Heart - drug effects
Heart - innervation
Heart - physiology
Heart Rate - drug effects
Heart Rate - physiology
heart rate variability
Humans
Hyperventilation - physiopathology
Male
muscarinic antagonists
Muscarinic Antagonists - pharmacology
Parasympathetic Nervous System - drug effects
Respiratory Mechanics - drug effects
Tidal Volume - drug effects
Vagus Nerve - physiology
title Effect of cardiac vagal outflow on complexity and fractal correlation properties of heart rate dynamics
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T23%3A48%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effect%20of%20cardiac%20vagal%20outflow%20on%20complexity%20and%20fractal%20correlation%20properties%20of%20heart%20rate%20dynamics&rft.jtitle=Autonomic%20&%20autacoid%20pharmacology&rft.au=Penttil%C3%A4,%20J.&rft.date=2003-06&rft.volume=23&rft.issue=3&rft.spage=173&rft.epage=179&rft.pages=173-179&rft.issn=1474-8665&rft.eissn=1474-8673&rft_id=info:doi/10.1046/j.1474-8673.2003.00293.x&rft_dat=%3Cproquest_cross%3E71475734%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=71475734&rft_id=info:pmid/14690492&rfr_iscdi=true