Assessment of microPET performance in analyzing the rat brain under different types of anesthesia: comparison between quantitative data obtained with microPET and ex vivo autoradiography

MicroPET (positron emission tomography) has been implemented for use in experiments with small animals. However, the quantification and optimal conditions for scanning are not established yet. The aim of this study was to compare the results obtained by microPET with those by ex vivo autoradiography...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:NeuroImage (Orlando, Fla.) Fla.), 2003-12, Vol.20 (4), p.2040-2050
Hauptverfasser: Matsumura, Akira, Mizokawa, Shigekazu, Tanaka, Masaaki, Wada, Yasuhiro, Nozaki, Satoshi, Nakamura, Fusao, Shiomi, Susumu, Ochi, Hironobu, Watanabe, Yasuyoshi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2050
container_issue 4
container_start_page 2040
container_title NeuroImage (Orlando, Fla.)
container_volume 20
creator Matsumura, Akira
Mizokawa, Shigekazu
Tanaka, Masaaki
Wada, Yasuhiro
Nozaki, Satoshi
Nakamura, Fusao
Shiomi, Susumu
Ochi, Hironobu
Watanabe, Yasuyoshi
description MicroPET (positron emission tomography) has been implemented for use in experiments with small animals. However, the quantification and optimal conditions for scanning are not established yet. The aim of this study was to compare the results obtained by microPET with those by ex vivo autoradiography of rat brain slices, based on the 2-[ 18F]fluoro-2-deoxy- d-glucose (FDG) method, and to establish the optimal conditions for scanning. As an example, we examined glucose metabolism in the rat brain under 6 types of anesthesia and in the conscious state. The scanning conditions for the rat brain were (1) use of a 4-mm-thick leaden jacket, (2) an energy window of 350–650 keV, and (3) a coincidence time window of 6 ns. Under these conditions, the quantitative ROI data from microPET showed a good correlation with the corresponding ROI data from FDG autoradiography in the animal study ( r 2 = 0.81). With our protocol, when anesthesia was started 40 min after the FDG injection, the glucose metabolism was almost the same as that in the conscious rat brain.
doi_str_mv 10.1016/j.neuroimage.2003.08.020
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_71472449</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1053811903005111</els_id><sourcerecordid>3244216551</sourcerecordid><originalsourceid>FETCH-LOGICAL-c398t-c75928eaf1382029562d47278322c4ee0e03ff0db9bcf457eb34797323f023d73</originalsourceid><addsrcrecordid>eNqFkcFuEzEQhlcIREvhFZAlJG4JY3t37eVWqlKQKsGhnC3vepw4ytpb25sSHo2nq6NEisSFky3rm38881UVobCkQNtPm6XHOQY36hUuGQBfglwCgxfVJYWuWXSNYC8P94YvJKXdRfUmpQ0AdLSWr6sLWreSC5CX1d_rlDClEX0mwZLRDTH8vH0gE0Yb4qj9gMR5or3e7v84vyJ5jSTqTPqoy_vsDUZinLUYDxF5P2E6BGmPqaDJ6c9kCOOko0vBkx7zE6Inj7P22WWd3Q6J0VmT0OcSiIY8ubw-_0N7Q_A32bldIHrOIWrjwirqab1_W72yepvw3em8qn59vX24-ba4_3H3_eb6fjHwTubFIJqOSdSWcsmAdU3LTC2YkJyxoUYEBG4tmL7rB1s3Antei05wxi0wbgS_qj4ec6cYHucylhpdGnC7LTOGOSlBS1xddwX88A-4CXMsm0uKNtC2wIVoCyWPVJkwpYhWTbGIjHtFQR3sqo0621UHuwqkKnZL6ftTg7kf0ZwLTzoL8OUIYNnHzmFUaXBYHBoXccjKBPf_Ls8jU79e</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1506603776</pqid></control><display><type>article</type><title>Assessment of microPET performance in analyzing the rat brain under different types of anesthesia: comparison between quantitative data obtained with microPET and ex vivo autoradiography</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><source>ProQuest Central</source><creator>Matsumura, Akira ; Mizokawa, Shigekazu ; Tanaka, Masaaki ; Wada, Yasuhiro ; Nozaki, Satoshi ; Nakamura, Fusao ; Shiomi, Susumu ; Ochi, Hironobu ; Watanabe, Yasuyoshi</creator><creatorcontrib>Matsumura, Akira ; Mizokawa, Shigekazu ; Tanaka, Masaaki ; Wada, Yasuhiro ; Nozaki, Satoshi ; Nakamura, Fusao ; Shiomi, Susumu ; Ochi, Hironobu ; Watanabe, Yasuyoshi</creatorcontrib><description>MicroPET (positron emission tomography) has been implemented for use in experiments with small animals. However, the quantification and optimal conditions for scanning are not established yet. The aim of this study was to compare the results obtained by microPET with those by ex vivo autoradiography of rat brain slices, based on the 2-[ 18F]fluoro-2-deoxy- d-glucose (FDG) method, and to establish the optimal conditions for scanning. As an example, we examined glucose metabolism in the rat brain under 6 types of anesthesia and in the conscious state. The scanning conditions for the rat brain were (1) use of a 4-mm-thick leaden jacket, (2) an energy window of 350–650 keV, and (3) a coincidence time window of 6 ns. Under these conditions, the quantitative ROI data from microPET showed a good correlation with the corresponding ROI data from FDG autoradiography in the animal study ( r 2 = 0.81). With our protocol, when anesthesia was started 40 min after the FDG injection, the glucose metabolism was almost the same as that in the conscious rat brain.</description><identifier>ISSN: 1053-8119</identifier><identifier>EISSN: 1095-9572</identifier><identifier>DOI: 10.1016/j.neuroimage.2003.08.020</identifier><identifier>PMID: 14683708</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Algorithms ; Anesthesia ; Animals ; Autoradiography ; Brain ; Brain - diagnostic imaging ; Brain research ; Data Interpretation, Statistical ; Ex vivo autoradiography ; Fluorodeoxyglucose ; Fluorodeoxyglucose F18 - pharmacokinetics ; Glucose ; Glucose - metabolism ; Glucose utilization ; Image Processing, Computer-Assisted ; Male ; MicroPET ; Models, Anatomic ; Quantification ; Radiopharmaceuticals - pharmacokinetics ; Rats ; Rats, Sprague-Dawley ; Rodents ; Science ; Studies ; Tomography, Emission-Computed - methods</subject><ispartof>NeuroImage (Orlando, Fla.), 2003-12, Vol.20 (4), p.2040-2050</ispartof><rights>2003 Elsevier Inc.</rights><rights>Copyright Elsevier Limited Dec 1, 2003</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c398t-c75928eaf1382029562d47278322c4ee0e03ff0db9bcf457eb34797323f023d73</citedby><cites>FETCH-LOGICAL-c398t-c75928eaf1382029562d47278322c4ee0e03ff0db9bcf457eb34797323f023d73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/1506603776?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,777,781,3537,27905,27906,45976,64364,64366,64368,72218</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/14683708$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Matsumura, Akira</creatorcontrib><creatorcontrib>Mizokawa, Shigekazu</creatorcontrib><creatorcontrib>Tanaka, Masaaki</creatorcontrib><creatorcontrib>Wada, Yasuhiro</creatorcontrib><creatorcontrib>Nozaki, Satoshi</creatorcontrib><creatorcontrib>Nakamura, Fusao</creatorcontrib><creatorcontrib>Shiomi, Susumu</creatorcontrib><creatorcontrib>Ochi, Hironobu</creatorcontrib><creatorcontrib>Watanabe, Yasuyoshi</creatorcontrib><title>Assessment of microPET performance in analyzing the rat brain under different types of anesthesia: comparison between quantitative data obtained with microPET and ex vivo autoradiography</title><title>NeuroImage (Orlando, Fla.)</title><addtitle>Neuroimage</addtitle><description>MicroPET (positron emission tomography) has been implemented for use in experiments with small animals. However, the quantification and optimal conditions for scanning are not established yet. The aim of this study was to compare the results obtained by microPET with those by ex vivo autoradiography of rat brain slices, based on the 2-[ 18F]fluoro-2-deoxy- d-glucose (FDG) method, and to establish the optimal conditions for scanning. As an example, we examined glucose metabolism in the rat brain under 6 types of anesthesia and in the conscious state. The scanning conditions for the rat brain were (1) use of a 4-mm-thick leaden jacket, (2) an energy window of 350–650 keV, and (3) a coincidence time window of 6 ns. Under these conditions, the quantitative ROI data from microPET showed a good correlation with the corresponding ROI data from FDG autoradiography in the animal study ( r 2 = 0.81). With our protocol, when anesthesia was started 40 min after the FDG injection, the glucose metabolism was almost the same as that in the conscious rat brain.</description><subject>Algorithms</subject><subject>Anesthesia</subject><subject>Animals</subject><subject>Autoradiography</subject><subject>Brain</subject><subject>Brain - diagnostic imaging</subject><subject>Brain research</subject><subject>Data Interpretation, Statistical</subject><subject>Ex vivo autoradiography</subject><subject>Fluorodeoxyglucose</subject><subject>Fluorodeoxyglucose F18 - pharmacokinetics</subject><subject>Glucose</subject><subject>Glucose - metabolism</subject><subject>Glucose utilization</subject><subject>Image Processing, Computer-Assisted</subject><subject>Male</subject><subject>MicroPET</subject><subject>Models, Anatomic</subject><subject>Quantification</subject><subject>Radiopharmaceuticals - pharmacokinetics</subject><subject>Rats</subject><subject>Rats, Sprague-Dawley</subject><subject>Rodents</subject><subject>Science</subject><subject>Studies</subject><subject>Tomography, Emission-Computed - methods</subject><issn>1053-8119</issn><issn>1095-9572</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqFkcFuEzEQhlcIREvhFZAlJG4JY3t37eVWqlKQKsGhnC3vepw4ytpb25sSHo2nq6NEisSFky3rm38881UVobCkQNtPm6XHOQY36hUuGQBfglwCgxfVJYWuWXSNYC8P94YvJKXdRfUmpQ0AdLSWr6sLWreSC5CX1d_rlDClEX0mwZLRDTH8vH0gE0Yb4qj9gMR5or3e7v84vyJ5jSTqTPqoy_vsDUZinLUYDxF5P2E6BGmPqaDJ6c9kCOOko0vBkx7zE6Inj7P22WWd3Q6J0VmT0OcSiIY8ubw-_0N7Q_A32bldIHrOIWrjwirqab1_W72yepvw3em8qn59vX24-ba4_3H3_eb6fjHwTubFIJqOSdSWcsmAdU3LTC2YkJyxoUYEBG4tmL7rB1s3Antei05wxi0wbgS_qj4ec6cYHucylhpdGnC7LTOGOSlBS1xddwX88A-4CXMsm0uKNtC2wIVoCyWPVJkwpYhWTbGIjHtFQR3sqo0621UHuwqkKnZL6ftTg7kf0ZwLTzoL8OUIYNnHzmFUaXBYHBoXccjKBPf_Ls8jU79e</recordid><startdate>20031201</startdate><enddate>20031201</enddate><creator>Matsumura, Akira</creator><creator>Mizokawa, Shigekazu</creator><creator>Tanaka, Masaaki</creator><creator>Wada, Yasuhiro</creator><creator>Nozaki, Satoshi</creator><creator>Nakamura, Fusao</creator><creator>Shiomi, Susumu</creator><creator>Ochi, Hironobu</creator><creator>Watanabe, Yasuyoshi</creator><general>Elsevier Inc</general><general>Elsevier Limited</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88G</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>20031201</creationdate><title>Assessment of microPET performance in analyzing the rat brain under different types of anesthesia: comparison between quantitative data obtained with microPET and ex vivo autoradiography</title><author>Matsumura, Akira ; Mizokawa, Shigekazu ; Tanaka, Masaaki ; Wada, Yasuhiro ; Nozaki, Satoshi ; Nakamura, Fusao ; Shiomi, Susumu ; Ochi, Hironobu ; Watanabe, Yasuyoshi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c398t-c75928eaf1382029562d47278322c4ee0e03ff0db9bcf457eb34797323f023d73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Algorithms</topic><topic>Anesthesia</topic><topic>Animals</topic><topic>Autoradiography</topic><topic>Brain</topic><topic>Brain - diagnostic imaging</topic><topic>Brain research</topic><topic>Data Interpretation, Statistical</topic><topic>Ex vivo autoradiography</topic><topic>Fluorodeoxyglucose</topic><topic>Fluorodeoxyglucose F18 - pharmacokinetics</topic><topic>Glucose</topic><topic>Glucose - metabolism</topic><topic>Glucose utilization</topic><topic>Image Processing, Computer-Assisted</topic><topic>Male</topic><topic>MicroPET</topic><topic>Models, Anatomic</topic><topic>Quantification</topic><topic>Radiopharmaceuticals - pharmacokinetics</topic><topic>Rats</topic><topic>Rats, Sprague-Dawley</topic><topic>Rodents</topic><topic>Science</topic><topic>Studies</topic><topic>Tomography, Emission-Computed - methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Matsumura, Akira</creatorcontrib><creatorcontrib>Mizokawa, Shigekazu</creatorcontrib><creatorcontrib>Tanaka, Masaaki</creatorcontrib><creatorcontrib>Wada, Yasuhiro</creatorcontrib><creatorcontrib>Nozaki, Satoshi</creatorcontrib><creatorcontrib>Nakamura, Fusao</creatorcontrib><creatorcontrib>Shiomi, Susumu</creatorcontrib><creatorcontrib>Ochi, Hironobu</creatorcontrib><creatorcontrib>Watanabe, Yasuyoshi</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Neurosciences Abstracts</collection><collection>ProQuest Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Psychology Journals (ProQuest)</collection><collection>ProQuest Biological Science Journals</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>NeuroImage (Orlando, Fla.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Matsumura, Akira</au><au>Mizokawa, Shigekazu</au><au>Tanaka, Masaaki</au><au>Wada, Yasuhiro</au><au>Nozaki, Satoshi</au><au>Nakamura, Fusao</au><au>Shiomi, Susumu</au><au>Ochi, Hironobu</au><au>Watanabe, Yasuyoshi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Assessment of microPET performance in analyzing the rat brain under different types of anesthesia: comparison between quantitative data obtained with microPET and ex vivo autoradiography</atitle><jtitle>NeuroImage (Orlando, Fla.)</jtitle><addtitle>Neuroimage</addtitle><date>2003-12-01</date><risdate>2003</risdate><volume>20</volume><issue>4</issue><spage>2040</spage><epage>2050</epage><pages>2040-2050</pages><issn>1053-8119</issn><eissn>1095-9572</eissn><abstract>MicroPET (positron emission tomography) has been implemented for use in experiments with small animals. However, the quantification and optimal conditions for scanning are not established yet. The aim of this study was to compare the results obtained by microPET with those by ex vivo autoradiography of rat brain slices, based on the 2-[ 18F]fluoro-2-deoxy- d-glucose (FDG) method, and to establish the optimal conditions for scanning. As an example, we examined glucose metabolism in the rat brain under 6 types of anesthesia and in the conscious state. The scanning conditions for the rat brain were (1) use of a 4-mm-thick leaden jacket, (2) an energy window of 350–650 keV, and (3) a coincidence time window of 6 ns. Under these conditions, the quantitative ROI data from microPET showed a good correlation with the corresponding ROI data from FDG autoradiography in the animal study ( r 2 = 0.81). With our protocol, when anesthesia was started 40 min after the FDG injection, the glucose metabolism was almost the same as that in the conscious rat brain.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>14683708</pmid><doi>10.1016/j.neuroimage.2003.08.020</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1053-8119
ispartof NeuroImage (Orlando, Fla.), 2003-12, Vol.20 (4), p.2040-2050
issn 1053-8119
1095-9572
language eng
recordid cdi_proquest_miscellaneous_71472449
source MEDLINE; Elsevier ScienceDirect Journals; ProQuest Central
subjects Algorithms
Anesthesia
Animals
Autoradiography
Brain
Brain - diagnostic imaging
Brain research
Data Interpretation, Statistical
Ex vivo autoradiography
Fluorodeoxyglucose
Fluorodeoxyglucose F18 - pharmacokinetics
Glucose
Glucose - metabolism
Glucose utilization
Image Processing, Computer-Assisted
Male
MicroPET
Models, Anatomic
Quantification
Radiopharmaceuticals - pharmacokinetics
Rats
Rats, Sprague-Dawley
Rodents
Science
Studies
Tomography, Emission-Computed - methods
title Assessment of microPET performance in analyzing the rat brain under different types of anesthesia: comparison between quantitative data obtained with microPET and ex vivo autoradiography
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T19%3A04%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Assessment%20of%20microPET%20performance%20in%20analyzing%20the%20rat%20brain%20under%20different%20types%20of%20anesthesia:%20comparison%20between%20quantitative%20data%20obtained%20with%20microPET%20and%20ex%20vivo%20autoradiography&rft.jtitle=NeuroImage%20(Orlando,%20Fla.)&rft.au=Matsumura,%20Akira&rft.date=2003-12-01&rft.volume=20&rft.issue=4&rft.spage=2040&rft.epage=2050&rft.pages=2040-2050&rft.issn=1053-8119&rft.eissn=1095-9572&rft_id=info:doi/10.1016/j.neuroimage.2003.08.020&rft_dat=%3Cproquest_cross%3E3244216551%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1506603776&rft_id=info:pmid/14683708&rft_els_id=S1053811903005111&rfr_iscdi=true