Assessment of microPET performance in analyzing the rat brain under different types of anesthesia: comparison between quantitative data obtained with microPET and ex vivo autoradiography
MicroPET (positron emission tomography) has been implemented for use in experiments with small animals. However, the quantification and optimal conditions for scanning are not established yet. The aim of this study was to compare the results obtained by microPET with those by ex vivo autoradiography...
Gespeichert in:
Veröffentlicht in: | NeuroImage (Orlando, Fla.) Fla.), 2003-12, Vol.20 (4), p.2040-2050 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2050 |
---|---|
container_issue | 4 |
container_start_page | 2040 |
container_title | NeuroImage (Orlando, Fla.) |
container_volume | 20 |
creator | Matsumura, Akira Mizokawa, Shigekazu Tanaka, Masaaki Wada, Yasuhiro Nozaki, Satoshi Nakamura, Fusao Shiomi, Susumu Ochi, Hironobu Watanabe, Yasuyoshi |
description | MicroPET (positron emission tomography) has been implemented for use in experiments with small animals. However, the quantification and optimal conditions for scanning are not established yet. The aim of this study was to compare the results obtained by microPET with those by ex vivo autoradiography of rat brain slices, based on the 2-[
18F]fluoro-2-deoxy-
d-glucose (FDG) method, and to establish the optimal conditions for scanning. As an example, we examined glucose metabolism in the rat brain under 6 types of anesthesia and in the conscious state. The scanning conditions for the rat brain were (1) use of a 4-mm-thick leaden jacket, (2) an energy window of 350–650 keV, and (3) a coincidence time window of 6 ns. Under these conditions, the quantitative ROI data from microPET showed a good correlation with the corresponding ROI data from FDG autoradiography in the animal study (
r
2 = 0.81). With our protocol, when anesthesia was started 40 min after the FDG injection, the glucose metabolism was almost the same as that in the conscious rat brain. |
doi_str_mv | 10.1016/j.neuroimage.2003.08.020 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_71472449</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1053811903005111</els_id><sourcerecordid>3244216551</sourcerecordid><originalsourceid>FETCH-LOGICAL-c398t-c75928eaf1382029562d47278322c4ee0e03ff0db9bcf457eb34797323f023d73</originalsourceid><addsrcrecordid>eNqFkcFuEzEQhlcIREvhFZAlJG4JY3t37eVWqlKQKsGhnC3vepw4ytpb25sSHo2nq6NEisSFky3rm38881UVobCkQNtPm6XHOQY36hUuGQBfglwCgxfVJYWuWXSNYC8P94YvJKXdRfUmpQ0AdLSWr6sLWreSC5CX1d_rlDClEX0mwZLRDTH8vH0gE0Yb4qj9gMR5or3e7v84vyJ5jSTqTPqoy_vsDUZinLUYDxF5P2E6BGmPqaDJ6c9kCOOko0vBkx7zE6Inj7P22WWd3Q6J0VmT0OcSiIY8ubw-_0N7Q_A32bldIHrOIWrjwirqab1_W72yepvw3em8qn59vX24-ba4_3H3_eb6fjHwTubFIJqOSdSWcsmAdU3LTC2YkJyxoUYEBG4tmL7rB1s3Antei05wxi0wbgS_qj4ec6cYHucylhpdGnC7LTOGOSlBS1xddwX88A-4CXMsm0uKNtC2wIVoCyWPVJkwpYhWTbGIjHtFQR3sqo0621UHuwqkKnZL6ftTg7kf0ZwLTzoL8OUIYNnHzmFUaXBYHBoXccjKBPf_Ls8jU79e</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1506603776</pqid></control><display><type>article</type><title>Assessment of microPET performance in analyzing the rat brain under different types of anesthesia: comparison between quantitative data obtained with microPET and ex vivo autoradiography</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><source>ProQuest Central</source><creator>Matsumura, Akira ; Mizokawa, Shigekazu ; Tanaka, Masaaki ; Wada, Yasuhiro ; Nozaki, Satoshi ; Nakamura, Fusao ; Shiomi, Susumu ; Ochi, Hironobu ; Watanabe, Yasuyoshi</creator><creatorcontrib>Matsumura, Akira ; Mizokawa, Shigekazu ; Tanaka, Masaaki ; Wada, Yasuhiro ; Nozaki, Satoshi ; Nakamura, Fusao ; Shiomi, Susumu ; Ochi, Hironobu ; Watanabe, Yasuyoshi</creatorcontrib><description>MicroPET (positron emission tomography) has been implemented for use in experiments with small animals. However, the quantification and optimal conditions for scanning are not established yet. The aim of this study was to compare the results obtained by microPET with those by ex vivo autoradiography of rat brain slices, based on the 2-[
18F]fluoro-2-deoxy-
d-glucose (FDG) method, and to establish the optimal conditions for scanning. As an example, we examined glucose metabolism in the rat brain under 6 types of anesthesia and in the conscious state. The scanning conditions for the rat brain were (1) use of a 4-mm-thick leaden jacket, (2) an energy window of 350–650 keV, and (3) a coincidence time window of 6 ns. Under these conditions, the quantitative ROI data from microPET showed a good correlation with the corresponding ROI data from FDG autoradiography in the animal study (
r
2 = 0.81). With our protocol, when anesthesia was started 40 min after the FDG injection, the glucose metabolism was almost the same as that in the conscious rat brain.</description><identifier>ISSN: 1053-8119</identifier><identifier>EISSN: 1095-9572</identifier><identifier>DOI: 10.1016/j.neuroimage.2003.08.020</identifier><identifier>PMID: 14683708</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Algorithms ; Anesthesia ; Animals ; Autoradiography ; Brain ; Brain - diagnostic imaging ; Brain research ; Data Interpretation, Statistical ; Ex vivo autoradiography ; Fluorodeoxyglucose ; Fluorodeoxyglucose F18 - pharmacokinetics ; Glucose ; Glucose - metabolism ; Glucose utilization ; Image Processing, Computer-Assisted ; Male ; MicroPET ; Models, Anatomic ; Quantification ; Radiopharmaceuticals - pharmacokinetics ; Rats ; Rats, Sprague-Dawley ; Rodents ; Science ; Studies ; Tomography, Emission-Computed - methods</subject><ispartof>NeuroImage (Orlando, Fla.), 2003-12, Vol.20 (4), p.2040-2050</ispartof><rights>2003 Elsevier Inc.</rights><rights>Copyright Elsevier Limited Dec 1, 2003</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c398t-c75928eaf1382029562d47278322c4ee0e03ff0db9bcf457eb34797323f023d73</citedby><cites>FETCH-LOGICAL-c398t-c75928eaf1382029562d47278322c4ee0e03ff0db9bcf457eb34797323f023d73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/1506603776?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,777,781,3537,27905,27906,45976,64364,64366,64368,72218</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/14683708$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Matsumura, Akira</creatorcontrib><creatorcontrib>Mizokawa, Shigekazu</creatorcontrib><creatorcontrib>Tanaka, Masaaki</creatorcontrib><creatorcontrib>Wada, Yasuhiro</creatorcontrib><creatorcontrib>Nozaki, Satoshi</creatorcontrib><creatorcontrib>Nakamura, Fusao</creatorcontrib><creatorcontrib>Shiomi, Susumu</creatorcontrib><creatorcontrib>Ochi, Hironobu</creatorcontrib><creatorcontrib>Watanabe, Yasuyoshi</creatorcontrib><title>Assessment of microPET performance in analyzing the rat brain under different types of anesthesia: comparison between quantitative data obtained with microPET and ex vivo autoradiography</title><title>NeuroImage (Orlando, Fla.)</title><addtitle>Neuroimage</addtitle><description>MicroPET (positron emission tomography) has been implemented for use in experiments with small animals. However, the quantification and optimal conditions for scanning are not established yet. The aim of this study was to compare the results obtained by microPET with those by ex vivo autoradiography of rat brain slices, based on the 2-[
18F]fluoro-2-deoxy-
d-glucose (FDG) method, and to establish the optimal conditions for scanning. As an example, we examined glucose metabolism in the rat brain under 6 types of anesthesia and in the conscious state. The scanning conditions for the rat brain were (1) use of a 4-mm-thick leaden jacket, (2) an energy window of 350–650 keV, and (3) a coincidence time window of 6 ns. Under these conditions, the quantitative ROI data from microPET showed a good correlation with the corresponding ROI data from FDG autoradiography in the animal study (
r
2 = 0.81). With our protocol, when anesthesia was started 40 min after the FDG injection, the glucose metabolism was almost the same as that in the conscious rat brain.</description><subject>Algorithms</subject><subject>Anesthesia</subject><subject>Animals</subject><subject>Autoradiography</subject><subject>Brain</subject><subject>Brain - diagnostic imaging</subject><subject>Brain research</subject><subject>Data Interpretation, Statistical</subject><subject>Ex vivo autoradiography</subject><subject>Fluorodeoxyglucose</subject><subject>Fluorodeoxyglucose F18 - pharmacokinetics</subject><subject>Glucose</subject><subject>Glucose - metabolism</subject><subject>Glucose utilization</subject><subject>Image Processing, Computer-Assisted</subject><subject>Male</subject><subject>MicroPET</subject><subject>Models, Anatomic</subject><subject>Quantification</subject><subject>Radiopharmaceuticals - pharmacokinetics</subject><subject>Rats</subject><subject>Rats, Sprague-Dawley</subject><subject>Rodents</subject><subject>Science</subject><subject>Studies</subject><subject>Tomography, Emission-Computed - methods</subject><issn>1053-8119</issn><issn>1095-9572</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqFkcFuEzEQhlcIREvhFZAlJG4JY3t37eVWqlKQKsGhnC3vepw4ytpb25sSHo2nq6NEisSFky3rm38881UVobCkQNtPm6XHOQY36hUuGQBfglwCgxfVJYWuWXSNYC8P94YvJKXdRfUmpQ0AdLSWr6sLWreSC5CX1d_rlDClEX0mwZLRDTH8vH0gE0Yb4qj9gMR5or3e7v84vyJ5jSTqTPqoy_vsDUZinLUYDxF5P2E6BGmPqaDJ6c9kCOOko0vBkx7zE6Inj7P22WWd3Q6J0VmT0OcSiIY8ubw-_0N7Q_A32bldIHrOIWrjwirqab1_W72yepvw3em8qn59vX24-ba4_3H3_eb6fjHwTubFIJqOSdSWcsmAdU3LTC2YkJyxoUYEBG4tmL7rB1s3Antei05wxi0wbgS_qj4ec6cYHucylhpdGnC7LTOGOSlBS1xddwX88A-4CXMsm0uKNtC2wIVoCyWPVJkwpYhWTbGIjHtFQR3sqo0621UHuwqkKnZL6ftTg7kf0ZwLTzoL8OUIYNnHzmFUaXBYHBoXccjKBPf_Ls8jU79e</recordid><startdate>20031201</startdate><enddate>20031201</enddate><creator>Matsumura, Akira</creator><creator>Mizokawa, Shigekazu</creator><creator>Tanaka, Masaaki</creator><creator>Wada, Yasuhiro</creator><creator>Nozaki, Satoshi</creator><creator>Nakamura, Fusao</creator><creator>Shiomi, Susumu</creator><creator>Ochi, Hironobu</creator><creator>Watanabe, Yasuyoshi</creator><general>Elsevier Inc</general><general>Elsevier Limited</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88G</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>20031201</creationdate><title>Assessment of microPET performance in analyzing the rat brain under different types of anesthesia: comparison between quantitative data obtained with microPET and ex vivo autoradiography</title><author>Matsumura, Akira ; Mizokawa, Shigekazu ; Tanaka, Masaaki ; Wada, Yasuhiro ; Nozaki, Satoshi ; Nakamura, Fusao ; Shiomi, Susumu ; Ochi, Hironobu ; Watanabe, Yasuyoshi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c398t-c75928eaf1382029562d47278322c4ee0e03ff0db9bcf457eb34797323f023d73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Algorithms</topic><topic>Anesthesia</topic><topic>Animals</topic><topic>Autoradiography</topic><topic>Brain</topic><topic>Brain - diagnostic imaging</topic><topic>Brain research</topic><topic>Data Interpretation, Statistical</topic><topic>Ex vivo autoradiography</topic><topic>Fluorodeoxyglucose</topic><topic>Fluorodeoxyglucose F18 - pharmacokinetics</topic><topic>Glucose</topic><topic>Glucose - metabolism</topic><topic>Glucose utilization</topic><topic>Image Processing, Computer-Assisted</topic><topic>Male</topic><topic>MicroPET</topic><topic>Models, Anatomic</topic><topic>Quantification</topic><topic>Radiopharmaceuticals - pharmacokinetics</topic><topic>Rats</topic><topic>Rats, Sprague-Dawley</topic><topic>Rodents</topic><topic>Science</topic><topic>Studies</topic><topic>Tomography, Emission-Computed - methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Matsumura, Akira</creatorcontrib><creatorcontrib>Mizokawa, Shigekazu</creatorcontrib><creatorcontrib>Tanaka, Masaaki</creatorcontrib><creatorcontrib>Wada, Yasuhiro</creatorcontrib><creatorcontrib>Nozaki, Satoshi</creatorcontrib><creatorcontrib>Nakamura, Fusao</creatorcontrib><creatorcontrib>Shiomi, Susumu</creatorcontrib><creatorcontrib>Ochi, Hironobu</creatorcontrib><creatorcontrib>Watanabe, Yasuyoshi</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Neurosciences Abstracts</collection><collection>ProQuest Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Psychology Journals (ProQuest)</collection><collection>ProQuest Biological Science Journals</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>NeuroImage (Orlando, Fla.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Matsumura, Akira</au><au>Mizokawa, Shigekazu</au><au>Tanaka, Masaaki</au><au>Wada, Yasuhiro</au><au>Nozaki, Satoshi</au><au>Nakamura, Fusao</au><au>Shiomi, Susumu</au><au>Ochi, Hironobu</au><au>Watanabe, Yasuyoshi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Assessment of microPET performance in analyzing the rat brain under different types of anesthesia: comparison between quantitative data obtained with microPET and ex vivo autoradiography</atitle><jtitle>NeuroImage (Orlando, Fla.)</jtitle><addtitle>Neuroimage</addtitle><date>2003-12-01</date><risdate>2003</risdate><volume>20</volume><issue>4</issue><spage>2040</spage><epage>2050</epage><pages>2040-2050</pages><issn>1053-8119</issn><eissn>1095-9572</eissn><abstract>MicroPET (positron emission tomography) has been implemented for use in experiments with small animals. However, the quantification and optimal conditions for scanning are not established yet. The aim of this study was to compare the results obtained by microPET with those by ex vivo autoradiography of rat brain slices, based on the 2-[
18F]fluoro-2-deoxy-
d-glucose (FDG) method, and to establish the optimal conditions for scanning. As an example, we examined glucose metabolism in the rat brain under 6 types of anesthesia and in the conscious state. The scanning conditions for the rat brain were (1) use of a 4-mm-thick leaden jacket, (2) an energy window of 350–650 keV, and (3) a coincidence time window of 6 ns. Under these conditions, the quantitative ROI data from microPET showed a good correlation with the corresponding ROI data from FDG autoradiography in the animal study (
r
2 = 0.81). With our protocol, when anesthesia was started 40 min after the FDG injection, the glucose metabolism was almost the same as that in the conscious rat brain.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>14683708</pmid><doi>10.1016/j.neuroimage.2003.08.020</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1053-8119 |
ispartof | NeuroImage (Orlando, Fla.), 2003-12, Vol.20 (4), p.2040-2050 |
issn | 1053-8119 1095-9572 |
language | eng |
recordid | cdi_proquest_miscellaneous_71472449 |
source | MEDLINE; Elsevier ScienceDirect Journals; ProQuest Central |
subjects | Algorithms Anesthesia Animals Autoradiography Brain Brain - diagnostic imaging Brain research Data Interpretation, Statistical Ex vivo autoradiography Fluorodeoxyglucose Fluorodeoxyglucose F18 - pharmacokinetics Glucose Glucose - metabolism Glucose utilization Image Processing, Computer-Assisted Male MicroPET Models, Anatomic Quantification Radiopharmaceuticals - pharmacokinetics Rats Rats, Sprague-Dawley Rodents Science Studies Tomography, Emission-Computed - methods |
title | Assessment of microPET performance in analyzing the rat brain under different types of anesthesia: comparison between quantitative data obtained with microPET and ex vivo autoradiography |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T19%3A04%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Assessment%20of%20microPET%20performance%20in%20analyzing%20the%20rat%20brain%20under%20different%20types%20of%20anesthesia:%20comparison%20between%20quantitative%20data%20obtained%20with%20microPET%20and%20ex%20vivo%20autoradiography&rft.jtitle=NeuroImage%20(Orlando,%20Fla.)&rft.au=Matsumura,%20Akira&rft.date=2003-12-01&rft.volume=20&rft.issue=4&rft.spage=2040&rft.epage=2050&rft.pages=2040-2050&rft.issn=1053-8119&rft.eissn=1095-9572&rft_id=info:doi/10.1016/j.neuroimage.2003.08.020&rft_dat=%3Cproquest_cross%3E3244216551%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1506603776&rft_id=info:pmid/14683708&rft_els_id=S1053811903005111&rfr_iscdi=true |