Genome engineering reveals large dispensable regions in Bacillus subtilis

Bacterial genomes contain 250 to 500 essential genes, as suggested by single gene disruptions and theoretical considerations. If this view is correct, the remaining nonessential genes of an organism, such as Bacillus subtilis, have been acquired during evolution in its perpetually changing ecologica...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecular biology and evolution 2003-12, Vol.20 (12), p.2076-2090
Hauptverfasser: Westers, Helga, Dorenbos, Ronald, van Dijl, Jan Maarten, Kabel, Jorrit, Flanagan, Tony, Devine, Kevin M, Jude, Florence, Seror, Simone J, Beekman, Aaron C, Darmon, Elise, Eschevins, Caroline, de Jong, Anne, Bron, Sierd, Kuipers, Oscar P, Albertini, Alessandra M, Antelmann, Haike, Hecker, Michael, Zamboni, Nicola, Sauer, Uwe, Bruand, Claude, Ehrlich, Dusko S, Alonso, Juan C, Salas, Margarita, Quax, Wim J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2090
container_issue 12
container_start_page 2076
container_title Molecular biology and evolution
container_volume 20
creator Westers, Helga
Dorenbos, Ronald
van Dijl, Jan Maarten
Kabel, Jorrit
Flanagan, Tony
Devine, Kevin M
Jude, Florence
Seror, Simone J
Beekman, Aaron C
Darmon, Elise
Eschevins, Caroline
de Jong, Anne
Bron, Sierd
Kuipers, Oscar P
Albertini, Alessandra M
Antelmann, Haike
Hecker, Michael
Zamboni, Nicola
Sauer, Uwe
Bruand, Claude
Ehrlich, Dusko S
Alonso, Juan C
Salas, Margarita
Quax, Wim J
description Bacterial genomes contain 250 to 500 essential genes, as suggested by single gene disruptions and theoretical considerations. If this view is correct, the remaining nonessential genes of an organism, such as Bacillus subtilis, have been acquired during evolution in its perpetually changing ecological niches. Notably, approximately 47% of the approximately 4,100 genes of B. subtilis belong to paralogous gene families in which several members have overlapping functions. Thus, essential gene functions will outnumber essential genes. To answer the question to what extent the most recently acquired DNA contributes to the life of B. subtilis under standard laboratory growth conditions, we initiated a "reconstruction" of the B. subtilis genome by removing prophages and AT-rich islands. Stepwise deletion of two prophages (SPbeta, PBSX), three prophage-like regions, and the largest operon of B. subtilis (pks) resulted in a genome reduction of 7.7% and elimination of 332 genes. The resulting strain was phenotypically characterized by metabolic flux analysis, proteomics, and specific assays for protein secretion, competence development, sporulation, and cell motility. We show that genome engineering is a feasible strategy for functional analysis of large gene clusters, and that removal of dispensable genomic regions may pave the way toward an optimized Bacillus cell factory.
doi_str_mv 10.1093/molbev/msg219
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_71471135</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>71471135</sourcerecordid><originalsourceid>FETCH-LOGICAL-p170t-366bb30f85e783c7fedbff26baf5b07acd844a0da3e6829eb398094ac2d064703</originalsourceid><addsrcrecordid>eNqFkD1PwzAURT2AaCmMrMgTW-hz7NjxCBUflSqxwBzZyUtk5Dghr6nEv6cSZWa6wz3nDpexGwH3Aqxc90P0eFj31OXCnrElGGkyBbJcsEuiTwChlNYXbCFyq6woxJJtXzANPXJMXUiIU0gdn_CALhKPbuqQN4FGTOR8xGPThSERD4k_ujrEOBOn2e9DDHTFztujhdenXLGP56f3zWu2e3vZbh522SgM7DOptfcS2rJAU8ratNj4ts21d23hwbi6KZVy0DiJuswtemlLsMrVeQNaGZArdve7O07D14y0r_pANcboEg4zVUYoI4Qs_gWFzaUCo47g7QmcfY9NNU6hd9N39feS_AEFY2ls</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>19234074</pqid></control><display><type>article</type><title>Genome engineering reveals large dispensable regions in Bacillus subtilis</title><source>Oxford Journals Open Access Collection</source><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Westers, Helga ; Dorenbos, Ronald ; van Dijl, Jan Maarten ; Kabel, Jorrit ; Flanagan, Tony ; Devine, Kevin M ; Jude, Florence ; Seror, Simone J ; Beekman, Aaron C ; Darmon, Elise ; Eschevins, Caroline ; de Jong, Anne ; Bron, Sierd ; Kuipers, Oscar P ; Albertini, Alessandra M ; Antelmann, Haike ; Hecker, Michael ; Zamboni, Nicola ; Sauer, Uwe ; Bruand, Claude ; Ehrlich, Dusko S ; Alonso, Juan C ; Salas, Margarita ; Quax, Wim J</creator><creatorcontrib>Westers, Helga ; Dorenbos, Ronald ; van Dijl, Jan Maarten ; Kabel, Jorrit ; Flanagan, Tony ; Devine, Kevin M ; Jude, Florence ; Seror, Simone J ; Beekman, Aaron C ; Darmon, Elise ; Eschevins, Caroline ; de Jong, Anne ; Bron, Sierd ; Kuipers, Oscar P ; Albertini, Alessandra M ; Antelmann, Haike ; Hecker, Michael ; Zamboni, Nicola ; Sauer, Uwe ; Bruand, Claude ; Ehrlich, Dusko S ; Alonso, Juan C ; Salas, Margarita ; Quax, Wim J</creatorcontrib><description>Bacterial genomes contain 250 to 500 essential genes, as suggested by single gene disruptions and theoretical considerations. If this view is correct, the remaining nonessential genes of an organism, such as Bacillus subtilis, have been acquired during evolution in its perpetually changing ecological niches. Notably, approximately 47% of the approximately 4,100 genes of B. subtilis belong to paralogous gene families in which several members have overlapping functions. Thus, essential gene functions will outnumber essential genes. To answer the question to what extent the most recently acquired DNA contributes to the life of B. subtilis under standard laboratory growth conditions, we initiated a "reconstruction" of the B. subtilis genome by removing prophages and AT-rich islands. Stepwise deletion of two prophages (SPbeta, PBSX), three prophage-like regions, and the largest operon of B. subtilis (pks) resulted in a genome reduction of 7.7% and elimination of 332 genes. The resulting strain was phenotypically characterized by metabolic flux analysis, proteomics, and specific assays for protein secretion, competence development, sporulation, and cell motility. We show that genome engineering is a feasible strategy for functional analysis of large gene clusters, and that removal of dispensable genomic regions may pave the way toward an optimized Bacillus cell factory.</description><identifier>ISSN: 0737-4038</identifier><identifier>DOI: 10.1093/molbev/msg219</identifier><identifier>PMID: 12949151</identifier><language>eng</language><publisher>United States</publisher><subject>Bacillus Phages - genetics ; Bacillus Phages - growth &amp; development ; Bacillus subtilis ; Bacillus subtilis - genetics ; Bacillus subtilis - growth &amp; development ; Chromosomes, Bacterial ; Culture Media ; Escherichia coli - genetics ; Evolution, Molecular ; Gene Deletion ; Genetic Engineering - methods ; Genome, Bacterial ; Physical Chromosome Mapping ; Plasmids ; Spores, Bacterial - genetics</subject><ispartof>Molecular biology and evolution, 2003-12, Vol.20 (12), p.2076-2090</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/12949151$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Westers, Helga</creatorcontrib><creatorcontrib>Dorenbos, Ronald</creatorcontrib><creatorcontrib>van Dijl, Jan Maarten</creatorcontrib><creatorcontrib>Kabel, Jorrit</creatorcontrib><creatorcontrib>Flanagan, Tony</creatorcontrib><creatorcontrib>Devine, Kevin M</creatorcontrib><creatorcontrib>Jude, Florence</creatorcontrib><creatorcontrib>Seror, Simone J</creatorcontrib><creatorcontrib>Beekman, Aaron C</creatorcontrib><creatorcontrib>Darmon, Elise</creatorcontrib><creatorcontrib>Eschevins, Caroline</creatorcontrib><creatorcontrib>de Jong, Anne</creatorcontrib><creatorcontrib>Bron, Sierd</creatorcontrib><creatorcontrib>Kuipers, Oscar P</creatorcontrib><creatorcontrib>Albertini, Alessandra M</creatorcontrib><creatorcontrib>Antelmann, Haike</creatorcontrib><creatorcontrib>Hecker, Michael</creatorcontrib><creatorcontrib>Zamboni, Nicola</creatorcontrib><creatorcontrib>Sauer, Uwe</creatorcontrib><creatorcontrib>Bruand, Claude</creatorcontrib><creatorcontrib>Ehrlich, Dusko S</creatorcontrib><creatorcontrib>Alonso, Juan C</creatorcontrib><creatorcontrib>Salas, Margarita</creatorcontrib><creatorcontrib>Quax, Wim J</creatorcontrib><title>Genome engineering reveals large dispensable regions in Bacillus subtilis</title><title>Molecular biology and evolution</title><addtitle>Mol Biol Evol</addtitle><description>Bacterial genomes contain 250 to 500 essential genes, as suggested by single gene disruptions and theoretical considerations. If this view is correct, the remaining nonessential genes of an organism, such as Bacillus subtilis, have been acquired during evolution in its perpetually changing ecological niches. Notably, approximately 47% of the approximately 4,100 genes of B. subtilis belong to paralogous gene families in which several members have overlapping functions. Thus, essential gene functions will outnumber essential genes. To answer the question to what extent the most recently acquired DNA contributes to the life of B. subtilis under standard laboratory growth conditions, we initiated a "reconstruction" of the B. subtilis genome by removing prophages and AT-rich islands. Stepwise deletion of two prophages (SPbeta, PBSX), three prophage-like regions, and the largest operon of B. subtilis (pks) resulted in a genome reduction of 7.7% and elimination of 332 genes. The resulting strain was phenotypically characterized by metabolic flux analysis, proteomics, and specific assays for protein secretion, competence development, sporulation, and cell motility. We show that genome engineering is a feasible strategy for functional analysis of large gene clusters, and that removal of dispensable genomic regions may pave the way toward an optimized Bacillus cell factory.</description><subject>Bacillus Phages - genetics</subject><subject>Bacillus Phages - growth &amp; development</subject><subject>Bacillus subtilis</subject><subject>Bacillus subtilis - genetics</subject><subject>Bacillus subtilis - growth &amp; development</subject><subject>Chromosomes, Bacterial</subject><subject>Culture Media</subject><subject>Escherichia coli - genetics</subject><subject>Evolution, Molecular</subject><subject>Gene Deletion</subject><subject>Genetic Engineering - methods</subject><subject>Genome, Bacterial</subject><subject>Physical Chromosome Mapping</subject><subject>Plasmids</subject><subject>Spores, Bacterial - genetics</subject><issn>0737-4038</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkD1PwzAURT2AaCmMrMgTW-hz7NjxCBUflSqxwBzZyUtk5Dghr6nEv6cSZWa6wz3nDpexGwH3Aqxc90P0eFj31OXCnrElGGkyBbJcsEuiTwChlNYXbCFyq6woxJJtXzANPXJMXUiIU0gdn_CALhKPbuqQN4FGTOR8xGPThSERD4k_ujrEOBOn2e9DDHTFztujhdenXLGP56f3zWu2e3vZbh522SgM7DOptfcS2rJAU8ratNj4ts21d23hwbi6KZVy0DiJuswtemlLsMrVeQNaGZArdve7O07D14y0r_pANcboEg4zVUYoI4Qs_gWFzaUCo47g7QmcfY9NNU6hd9N39feS_AEFY2ls</recordid><startdate>20031201</startdate><enddate>20031201</enddate><creator>Westers, Helga</creator><creator>Dorenbos, Ronald</creator><creator>van Dijl, Jan Maarten</creator><creator>Kabel, Jorrit</creator><creator>Flanagan, Tony</creator><creator>Devine, Kevin M</creator><creator>Jude, Florence</creator><creator>Seror, Simone J</creator><creator>Beekman, Aaron C</creator><creator>Darmon, Elise</creator><creator>Eschevins, Caroline</creator><creator>de Jong, Anne</creator><creator>Bron, Sierd</creator><creator>Kuipers, Oscar P</creator><creator>Albertini, Alessandra M</creator><creator>Antelmann, Haike</creator><creator>Hecker, Michael</creator><creator>Zamboni, Nicola</creator><creator>Sauer, Uwe</creator><creator>Bruand, Claude</creator><creator>Ehrlich, Dusko S</creator><creator>Alonso, Juan C</creator><creator>Salas, Margarita</creator><creator>Quax, Wim J</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>7QL</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>20031201</creationdate><title>Genome engineering reveals large dispensable regions in Bacillus subtilis</title><author>Westers, Helga ; Dorenbos, Ronald ; van Dijl, Jan Maarten ; Kabel, Jorrit ; Flanagan, Tony ; Devine, Kevin M ; Jude, Florence ; Seror, Simone J ; Beekman, Aaron C ; Darmon, Elise ; Eschevins, Caroline ; de Jong, Anne ; Bron, Sierd ; Kuipers, Oscar P ; Albertini, Alessandra M ; Antelmann, Haike ; Hecker, Michael ; Zamboni, Nicola ; Sauer, Uwe ; Bruand, Claude ; Ehrlich, Dusko S ; Alonso, Juan C ; Salas, Margarita ; Quax, Wim J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p170t-366bb30f85e783c7fedbff26baf5b07acd844a0da3e6829eb398094ac2d064703</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Bacillus Phages - genetics</topic><topic>Bacillus Phages - growth &amp; development</topic><topic>Bacillus subtilis</topic><topic>Bacillus subtilis - genetics</topic><topic>Bacillus subtilis - growth &amp; development</topic><topic>Chromosomes, Bacterial</topic><topic>Culture Media</topic><topic>Escherichia coli - genetics</topic><topic>Evolution, Molecular</topic><topic>Gene Deletion</topic><topic>Genetic Engineering - methods</topic><topic>Genome, Bacterial</topic><topic>Physical Chromosome Mapping</topic><topic>Plasmids</topic><topic>Spores, Bacterial - genetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Westers, Helga</creatorcontrib><creatorcontrib>Dorenbos, Ronald</creatorcontrib><creatorcontrib>van Dijl, Jan Maarten</creatorcontrib><creatorcontrib>Kabel, Jorrit</creatorcontrib><creatorcontrib>Flanagan, Tony</creatorcontrib><creatorcontrib>Devine, Kevin M</creatorcontrib><creatorcontrib>Jude, Florence</creatorcontrib><creatorcontrib>Seror, Simone J</creatorcontrib><creatorcontrib>Beekman, Aaron C</creatorcontrib><creatorcontrib>Darmon, Elise</creatorcontrib><creatorcontrib>Eschevins, Caroline</creatorcontrib><creatorcontrib>de Jong, Anne</creatorcontrib><creatorcontrib>Bron, Sierd</creatorcontrib><creatorcontrib>Kuipers, Oscar P</creatorcontrib><creatorcontrib>Albertini, Alessandra M</creatorcontrib><creatorcontrib>Antelmann, Haike</creatorcontrib><creatorcontrib>Hecker, Michael</creatorcontrib><creatorcontrib>Zamboni, Nicola</creatorcontrib><creatorcontrib>Sauer, Uwe</creatorcontrib><creatorcontrib>Bruand, Claude</creatorcontrib><creatorcontrib>Ehrlich, Dusko S</creatorcontrib><creatorcontrib>Alonso, Juan C</creatorcontrib><creatorcontrib>Salas, Margarita</creatorcontrib><creatorcontrib>Quax, Wim J</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Molecular biology and evolution</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Westers, Helga</au><au>Dorenbos, Ronald</au><au>van Dijl, Jan Maarten</au><au>Kabel, Jorrit</au><au>Flanagan, Tony</au><au>Devine, Kevin M</au><au>Jude, Florence</au><au>Seror, Simone J</au><au>Beekman, Aaron C</au><au>Darmon, Elise</au><au>Eschevins, Caroline</au><au>de Jong, Anne</au><au>Bron, Sierd</au><au>Kuipers, Oscar P</au><au>Albertini, Alessandra M</au><au>Antelmann, Haike</au><au>Hecker, Michael</au><au>Zamboni, Nicola</au><au>Sauer, Uwe</au><au>Bruand, Claude</au><au>Ehrlich, Dusko S</au><au>Alonso, Juan C</au><au>Salas, Margarita</au><au>Quax, Wim J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Genome engineering reveals large dispensable regions in Bacillus subtilis</atitle><jtitle>Molecular biology and evolution</jtitle><addtitle>Mol Biol Evol</addtitle><date>2003-12-01</date><risdate>2003</risdate><volume>20</volume><issue>12</issue><spage>2076</spage><epage>2090</epage><pages>2076-2090</pages><issn>0737-4038</issn><abstract>Bacterial genomes contain 250 to 500 essential genes, as suggested by single gene disruptions and theoretical considerations. If this view is correct, the remaining nonessential genes of an organism, such as Bacillus subtilis, have been acquired during evolution in its perpetually changing ecological niches. Notably, approximately 47% of the approximately 4,100 genes of B. subtilis belong to paralogous gene families in which several members have overlapping functions. Thus, essential gene functions will outnumber essential genes. To answer the question to what extent the most recently acquired DNA contributes to the life of B. subtilis under standard laboratory growth conditions, we initiated a "reconstruction" of the B. subtilis genome by removing prophages and AT-rich islands. Stepwise deletion of two prophages (SPbeta, PBSX), three prophage-like regions, and the largest operon of B. subtilis (pks) resulted in a genome reduction of 7.7% and elimination of 332 genes. The resulting strain was phenotypically characterized by metabolic flux analysis, proteomics, and specific assays for protein secretion, competence development, sporulation, and cell motility. We show that genome engineering is a feasible strategy for functional analysis of large gene clusters, and that removal of dispensable genomic regions may pave the way toward an optimized Bacillus cell factory.</abstract><cop>United States</cop><pmid>12949151</pmid><doi>10.1093/molbev/msg219</doi><tpages>15</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0737-4038
ispartof Molecular biology and evolution, 2003-12, Vol.20 (12), p.2076-2090
issn 0737-4038
language eng
recordid cdi_proquest_miscellaneous_71471135
source Oxford Journals Open Access Collection; MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Bacillus Phages - genetics
Bacillus Phages - growth & development
Bacillus subtilis
Bacillus subtilis - genetics
Bacillus subtilis - growth & development
Chromosomes, Bacterial
Culture Media
Escherichia coli - genetics
Evolution, Molecular
Gene Deletion
Genetic Engineering - methods
Genome, Bacterial
Physical Chromosome Mapping
Plasmids
Spores, Bacterial - genetics
title Genome engineering reveals large dispensable regions in Bacillus subtilis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T13%3A05%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Genome%20engineering%20reveals%20large%20dispensable%20regions%20in%20Bacillus%20subtilis&rft.jtitle=Molecular%20biology%20and%20evolution&rft.au=Westers,%20Helga&rft.date=2003-12-01&rft.volume=20&rft.issue=12&rft.spage=2076&rft.epage=2090&rft.pages=2076-2090&rft.issn=0737-4038&rft_id=info:doi/10.1093/molbev/msg219&rft_dat=%3Cproquest_pubme%3E71471135%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=19234074&rft_id=info:pmid/12949151&rfr_iscdi=true