Diaphragm Motion Affects Flow Patterns in an Artificial Heart

:  In the sac‐driven artificial heart, the flow characteristics are coupled to the dynamics of the sac motion. The opening dynamics of the sac wall can, for example, strongly affect the chamber flow characteristics during diastole by directing or impeding the inflow. Poor sac motion can reduce the v...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Artificial organs 2003-12, Vol.27 (12), p.1102-1109
Hauptverfasser: Hochareon, Pramote, Manning, Keefe B., Fontaine, Arnold A., Deutsch, Steven, Tarbell, John M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1109
container_issue 12
container_start_page 1102
container_title Artificial organs
container_volume 27
creator Hochareon, Pramote
Manning, Keefe B.
Fontaine, Arnold A.
Deutsch, Steven
Tarbell, John M.
description :  In the sac‐driven artificial heart, the flow characteristics are coupled to the dynamics of the sac motion. The opening dynamics of the sac wall can, for example, strongly affect the chamber flow characteristics during diastole by directing or impeding the inflow. Poor sac motion can reduce the volume output of the pump and may increase the potential for thrombus formation within the ventricular chamber. It is particularly important for laboratory studies of the flow fields in artificial hearts that the diaphragm motion properly simulates the sac motion observed in vivo. In the present study, flow visualization was performed to investigate the relationship between the chamber flow characteristics of a Penn State artificial heart and the motion of the diaphragm during the filling phase during in vitro experimentation. The chamber flow pattern and diaphragm motion were recorded as a function of time, using high‐speed videography. Experiments were conducted to determine the influence of diaphragm motion on the flow characteristics by altering the filling pressure, diaphragm thickness, and fluid density. Diaphragm motion was quantified by tracking the position of three surface points over the cardiac cycle. The alignment of these three surface trajectories can be used to quantify the uniformity of diaphragm motion. As a result, diaphragm motion was determined to be nonuniform under most operating conditions with the diaphragm opening in a wave‐like pattern starting at the bottom of the chamber and propagating toward the inflow/outflow ports. This opening pattern simulates the opening pattern observed in an in vitro study of the clinical blood sac used in the Lionheart LVAD.
doi_str_mv 10.1111/j.1525-1594.2003.07206.x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_71466658</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>19234602</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4846-41a2d5f378008ff276a537be29319028cd580eb1028481ae6ff90f1cd9f6c43d3</originalsourceid><addsrcrecordid>eNqNkMtOwzAQRS0EgvL4BZQVu4Tx21mwqAqlSLwFgp3lJja4pE2xU1H-noRWsITZzEhz7lg-CCUYMtzW8STDnPAU85xlBIBmIAmIbLmBej-LTdQDLCDlgj3voN0YJwAgGYhttIOZkIoR1kMnp97MX4N5mSZXdePrWdJ3zhZNTIZV_ZHcmqaxYRYTP0tMuwuNd77wpkpG1oRmH205U0V7sO576HF49jAYpZc35xeD_mVaMMVEyrAhJXdUKgDlHJHCcCrHluQU50BUUXIFdozbkSlsrHAuB4eLMneiYLSke-hodXce6veFjY2e-ljYqjIzWy-ilu2HhODqTxDnhDIBpAXVCixCHWOwTs-Dn5rwqTHozrGe6E6l7lTqzrH-dqyXbfRw_cZiPLXlb3AttQVOVsCHr-znvw_r_s19N7X5dJX3sbHLn7wJb1pIKrl-uj7XYnQ3YPn9tX6iX4jCl5A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>19234602</pqid></control><display><type>article</type><title>Diaphragm Motion Affects Flow Patterns in an Artificial Heart</title><source>Wiley-Blackwell Journals</source><source>MEDLINE</source><creator>Hochareon, Pramote ; Manning, Keefe B. ; Fontaine, Arnold A. ; Deutsch, Steven ; Tarbell, John M.</creator><creatorcontrib>Hochareon, Pramote ; Manning, Keefe B. ; Fontaine, Arnold A. ; Deutsch, Steven ; Tarbell, John M.</creatorcontrib><description>:  In the sac‐driven artificial heart, the flow characteristics are coupled to the dynamics of the sac motion. The opening dynamics of the sac wall can, for example, strongly affect the chamber flow characteristics during diastole by directing or impeding the inflow. Poor sac motion can reduce the volume output of the pump and may increase the potential for thrombus formation within the ventricular chamber. It is particularly important for laboratory studies of the flow fields in artificial hearts that the diaphragm motion properly simulates the sac motion observed in vivo. In the present study, flow visualization was performed to investigate the relationship between the chamber flow characteristics of a Penn State artificial heart and the motion of the diaphragm during the filling phase during in vitro experimentation. The chamber flow pattern and diaphragm motion were recorded as a function of time, using high‐speed videography. Experiments were conducted to determine the influence of diaphragm motion on the flow characteristics by altering the filling pressure, diaphragm thickness, and fluid density. Diaphragm motion was quantified by tracking the position of three surface points over the cardiac cycle. The alignment of these three surface trajectories can be used to quantify the uniformity of diaphragm motion. As a result, diaphragm motion was determined to be nonuniform under most operating conditions with the diaphragm opening in a wave‐like pattern starting at the bottom of the chamber and propagating toward the inflow/outflow ports. This opening pattern simulates the opening pattern observed in an in vitro study of the clinical blood sac used in the Lionheart LVAD.</description><identifier>ISSN: 0160-564X</identifier><identifier>EISSN: 1525-1594</identifier><identifier>DOI: 10.1111/j.1525-1594.2003.07206.x</identifier><identifier>PMID: 14678424</identifier><language>eng</language><publisher>Oxford, UK and Malden, USA: Blackwell Science Inc</publisher><subject>Blood Circulation ; Blood Flow Velocity ; Heart, Artificial ; Hemodynamics ; Humans ; Materials Testing ; Membranes, Artificial</subject><ispartof>Artificial organs, 2003-12, Vol.27 (12), p.1102-1109</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4846-41a2d5f378008ff276a537be29319028cd580eb1028481ae6ff90f1cd9f6c43d3</citedby><cites>FETCH-LOGICAL-c4846-41a2d5f378008ff276a537be29319028cd580eb1028481ae6ff90f1cd9f6c43d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fj.1525-1594.2003.07206.x$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fj.1525-1594.2003.07206.x$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/14678424$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hochareon, Pramote</creatorcontrib><creatorcontrib>Manning, Keefe B.</creatorcontrib><creatorcontrib>Fontaine, Arnold A.</creatorcontrib><creatorcontrib>Deutsch, Steven</creatorcontrib><creatorcontrib>Tarbell, John M.</creatorcontrib><title>Diaphragm Motion Affects Flow Patterns in an Artificial Heart</title><title>Artificial organs</title><addtitle>Artif Organs</addtitle><description>:  In the sac‐driven artificial heart, the flow characteristics are coupled to the dynamics of the sac motion. The opening dynamics of the sac wall can, for example, strongly affect the chamber flow characteristics during diastole by directing or impeding the inflow. Poor sac motion can reduce the volume output of the pump and may increase the potential for thrombus formation within the ventricular chamber. It is particularly important for laboratory studies of the flow fields in artificial hearts that the diaphragm motion properly simulates the sac motion observed in vivo. In the present study, flow visualization was performed to investigate the relationship between the chamber flow characteristics of a Penn State artificial heart and the motion of the diaphragm during the filling phase during in vitro experimentation. The chamber flow pattern and diaphragm motion were recorded as a function of time, using high‐speed videography. Experiments were conducted to determine the influence of diaphragm motion on the flow characteristics by altering the filling pressure, diaphragm thickness, and fluid density. Diaphragm motion was quantified by tracking the position of three surface points over the cardiac cycle. The alignment of these three surface trajectories can be used to quantify the uniformity of diaphragm motion. As a result, diaphragm motion was determined to be nonuniform under most operating conditions with the diaphragm opening in a wave‐like pattern starting at the bottom of the chamber and propagating toward the inflow/outflow ports. This opening pattern simulates the opening pattern observed in an in vitro study of the clinical blood sac used in the Lionheart LVAD.</description><subject>Blood Circulation</subject><subject>Blood Flow Velocity</subject><subject>Heart, Artificial</subject><subject>Hemodynamics</subject><subject>Humans</subject><subject>Materials Testing</subject><subject>Membranes, Artificial</subject><issn>0160-564X</issn><issn>1525-1594</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkMtOwzAQRS0EgvL4BZQVu4Tx21mwqAqlSLwFgp3lJja4pE2xU1H-noRWsITZzEhz7lg-CCUYMtzW8STDnPAU85xlBIBmIAmIbLmBej-LTdQDLCDlgj3voN0YJwAgGYhttIOZkIoR1kMnp97MX4N5mSZXdePrWdJ3zhZNTIZV_ZHcmqaxYRYTP0tMuwuNd77wpkpG1oRmH205U0V7sO576HF49jAYpZc35xeD_mVaMMVEyrAhJXdUKgDlHJHCcCrHluQU50BUUXIFdozbkSlsrHAuB4eLMneiYLSke-hodXce6veFjY2e-ljYqjIzWy-ilu2HhODqTxDnhDIBpAXVCixCHWOwTs-Dn5rwqTHozrGe6E6l7lTqzrH-dqyXbfRw_cZiPLXlb3AttQVOVsCHr-znvw_r_s19N7X5dJX3sbHLn7wJb1pIKrl-uj7XYnQ3YPn9tX6iX4jCl5A</recordid><startdate>200312</startdate><enddate>200312</enddate><creator>Hochareon, Pramote</creator><creator>Manning, Keefe B.</creator><creator>Fontaine, Arnold A.</creator><creator>Deutsch, Steven</creator><creator>Tarbell, John M.</creator><general>Blackwell Science Inc</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>200312</creationdate><title>Diaphragm Motion Affects Flow Patterns in an Artificial Heart</title><author>Hochareon, Pramote ; Manning, Keefe B. ; Fontaine, Arnold A. ; Deutsch, Steven ; Tarbell, John M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4846-41a2d5f378008ff276a537be29319028cd580eb1028481ae6ff90f1cd9f6c43d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Blood Circulation</topic><topic>Blood Flow Velocity</topic><topic>Heart, Artificial</topic><topic>Hemodynamics</topic><topic>Humans</topic><topic>Materials Testing</topic><topic>Membranes, Artificial</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hochareon, Pramote</creatorcontrib><creatorcontrib>Manning, Keefe B.</creatorcontrib><creatorcontrib>Fontaine, Arnold A.</creatorcontrib><creatorcontrib>Deutsch, Steven</creatorcontrib><creatorcontrib>Tarbell, John M.</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Artificial organs</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hochareon, Pramote</au><au>Manning, Keefe B.</au><au>Fontaine, Arnold A.</au><au>Deutsch, Steven</au><au>Tarbell, John M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Diaphragm Motion Affects Flow Patterns in an Artificial Heart</atitle><jtitle>Artificial organs</jtitle><addtitle>Artif Organs</addtitle><date>2003-12</date><risdate>2003</risdate><volume>27</volume><issue>12</issue><spage>1102</spage><epage>1109</epage><pages>1102-1109</pages><issn>0160-564X</issn><eissn>1525-1594</eissn><abstract>:  In the sac‐driven artificial heart, the flow characteristics are coupled to the dynamics of the sac motion. The opening dynamics of the sac wall can, for example, strongly affect the chamber flow characteristics during diastole by directing or impeding the inflow. Poor sac motion can reduce the volume output of the pump and may increase the potential for thrombus formation within the ventricular chamber. It is particularly important for laboratory studies of the flow fields in artificial hearts that the diaphragm motion properly simulates the sac motion observed in vivo. In the present study, flow visualization was performed to investigate the relationship between the chamber flow characteristics of a Penn State artificial heart and the motion of the diaphragm during the filling phase during in vitro experimentation. The chamber flow pattern and diaphragm motion were recorded as a function of time, using high‐speed videography. Experiments were conducted to determine the influence of diaphragm motion on the flow characteristics by altering the filling pressure, diaphragm thickness, and fluid density. Diaphragm motion was quantified by tracking the position of three surface points over the cardiac cycle. The alignment of these three surface trajectories can be used to quantify the uniformity of diaphragm motion. As a result, diaphragm motion was determined to be nonuniform under most operating conditions with the diaphragm opening in a wave‐like pattern starting at the bottom of the chamber and propagating toward the inflow/outflow ports. This opening pattern simulates the opening pattern observed in an in vitro study of the clinical blood sac used in the Lionheart LVAD.</abstract><cop>Oxford, UK and Malden, USA</cop><pub>Blackwell Science Inc</pub><pmid>14678424</pmid><doi>10.1111/j.1525-1594.2003.07206.x</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0160-564X
ispartof Artificial organs, 2003-12, Vol.27 (12), p.1102-1109
issn 0160-564X
1525-1594
language eng
recordid cdi_proquest_miscellaneous_71466658
source Wiley-Blackwell Journals; MEDLINE
subjects Blood Circulation
Blood Flow Velocity
Heart, Artificial
Hemodynamics
Humans
Materials Testing
Membranes, Artificial
title Diaphragm Motion Affects Flow Patterns in an Artificial Heart
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T06%3A25%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Diaphragm%20Motion%20Affects%20Flow%20Patterns%20in%20an%20Artificial%20Heart&rft.jtitle=Artificial%20organs&rft.au=Hochareon,%20Pramote&rft.date=2003-12&rft.volume=27&rft.issue=12&rft.spage=1102&rft.epage=1109&rft.pages=1102-1109&rft.issn=0160-564X&rft.eissn=1525-1594&rft_id=info:doi/10.1111/j.1525-1594.2003.07206.x&rft_dat=%3Cproquest_cross%3E19234602%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=19234602&rft_id=info:pmid/14678424&rfr_iscdi=true