Toward minimalist models of larger proteins: A ubiquitin-like protein

Our recently developed off‐lattice bead model capable of simulating protein structures with mixed α/β content has been extended to model the folding of a ubiquitin‐like protein and provides a means for examining the more complex kinetics involved in the folding of larger proteins. Using trajectories...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proteins, structure, function, and bioinformatics structure, function, and bioinformatics, 2002-03, Vol.46 (4), p.368-379
Hauptverfasser: Sorenson, Jon M., Head-Gordon, Teresa
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 379
container_issue 4
container_start_page 368
container_title Proteins, structure, function, and bioinformatics
container_volume 46
creator Sorenson, Jon M.
Head-Gordon, Teresa
description Our recently developed off‐lattice bead model capable of simulating protein structures with mixed α/β content has been extended to model the folding of a ubiquitin‐like protein and provides a means for examining the more complex kinetics involved in the folding of larger proteins. Using trajectories generated from constant‐temperature Langevin dynamics simulations and sampling with the multiple multi‐histogram method over five‐order parameters, we are able to characterize the free energy landscape for folding and find evidence for folding through compact intermediates. Our model reproduces the observation that the C‐terminus loop structure in ubiquitin is the last to fold in the folding process and most likely plays a spectator role in the folding kinetics. The possibility of a productive metastable intermediate along the folding pathway consisting of collapsed states with no secondary structure, and of intermediates or transition structures involving secondary structural elements occurring early in the sequence, is also supported by our model. The kinetics of folding remain multi‐exponential below the folding temperature, with glass‐like kinetics appearing at T/Tf ∼ 0.86. This new physicochemical model, designed to be predictive, helps validate the value of modeling protein folding at this level of detail for genomic‐scale studies, and motivates further studies of other protein topologies and the impact of more complex energy functions, such as the addition of solvation forces. Proteins 2002;46:368–379. © 2002 Wiley‐Liss, Inc.
doi_str_mv 10.1002/prot.1174
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_71455464</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>71455464</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3594-c15112541de3e41c613adac93958b6ce1d41e11b3a5171b9084fab17a3d334393</originalsourceid><addsrcrecordid>eNp1kE1PwjAYgBujEUQP_gGzk4mHQV_arps3JYgmRPzAeGy6rTOVjkG7Bfn3btnUk6ce-rxP-z4InQMeAsbj0cYW5RCA0wPUBxxxHwOhh6iPw5D7hIWsh06c-8QYBxEJjlEPICSMwbiPpstiJ23q5Xqtc2m0K728SJVxXpF5RtoPZb1Gr_TaXXs3XhXrbaVLvfaNXqmfq1N0lEnj1Fl3DtDb3XQ5uffni9nD5GbuJ4RF1E-AAYwZhVQRRSEJgMhUJhGJWBgHiYKUggKIiWTAIY5wSDMZA5ckJYSSiAzQZeut391WypUi1y5Rxsi1KionOFDGaEBr8KoFE1s4Z1UmNrbez-4FYNE0E83PRdOsZi86aRXnKv0ju0g1MGqBnTZq_79JPL0slp3Sbyfqnurrd0LalQg44Uy8P87ELeevz3UXEZJvdWyE8w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>71455464</pqid></control><display><type>article</type><title>Toward minimalist models of larger proteins: A ubiquitin-like protein</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Sorenson, Jon M. ; Head-Gordon, Teresa</creator><creatorcontrib>Sorenson, Jon M. ; Head-Gordon, Teresa</creatorcontrib><description>Our recently developed off‐lattice bead model capable of simulating protein structures with mixed α/β content has been extended to model the folding of a ubiquitin‐like protein and provides a means for examining the more complex kinetics involved in the folding of larger proteins. Using trajectories generated from constant‐temperature Langevin dynamics simulations and sampling with the multiple multi‐histogram method over five‐order parameters, we are able to characterize the free energy landscape for folding and find evidence for folding through compact intermediates. Our model reproduces the observation that the C‐terminus loop structure in ubiquitin is the last to fold in the folding process and most likely plays a spectator role in the folding kinetics. The possibility of a productive metastable intermediate along the folding pathway consisting of collapsed states with no secondary structure, and of intermediates or transition structures involving secondary structural elements occurring early in the sequence, is also supported by our model. The kinetics of folding remain multi‐exponential below the folding temperature, with glass‐like kinetics appearing at T/Tf ∼ 0.86. This new physicochemical model, designed to be predictive, helps validate the value of modeling protein folding at this level of detail for genomic‐scale studies, and motivates further studies of other protein topologies and the impact of more complex energy functions, such as the addition of solvation forces. Proteins 2002;46:368–379. © 2002 Wiley‐Liss, Inc.</description><identifier>ISSN: 0887-3585</identifier><identifier>EISSN: 1097-0134</identifier><identifier>DOI: 10.1002/prot.1174</identifier><identifier>PMID: 11835512</identifier><language>eng</language><publisher>New York: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>Amino Acid Sequence ; Animals ; Computer Simulation ; Kinetics ; Models, Molecular ; Models, Theoretical ; multi-state kinetics ; multiple histogram method ; off-lattice models ; Protein Folding ; Protein Structure, Secondary ; Proteins - chemistry ; Thermodynamics ; ubiquitin ; Ubiquitin - chemistry ; α/β proteins</subject><ispartof>Proteins, structure, function, and bioinformatics, 2002-03, Vol.46 (4), p.368-379</ispartof><rights>Copyright © 2002 Wiley‐Liss, Inc.</rights><rights>Copyright 2002 Wiley‐Liss, Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3594-c15112541de3e41c613adac93958b6ce1d41e11b3a5171b9084fab17a3d334393</citedby><cites>FETCH-LOGICAL-c3594-c15112541de3e41c613adac93958b6ce1d41e11b3a5171b9084fab17a3d334393</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fprot.1174$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fprot.1174$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/11835512$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sorenson, Jon M.</creatorcontrib><creatorcontrib>Head-Gordon, Teresa</creatorcontrib><title>Toward minimalist models of larger proteins: A ubiquitin-like protein</title><title>Proteins, structure, function, and bioinformatics</title><addtitle>Proteins</addtitle><description>Our recently developed off‐lattice bead model capable of simulating protein structures with mixed α/β content has been extended to model the folding of a ubiquitin‐like protein and provides a means for examining the more complex kinetics involved in the folding of larger proteins. Using trajectories generated from constant‐temperature Langevin dynamics simulations and sampling with the multiple multi‐histogram method over five‐order parameters, we are able to characterize the free energy landscape for folding and find evidence for folding through compact intermediates. Our model reproduces the observation that the C‐terminus loop structure in ubiquitin is the last to fold in the folding process and most likely plays a spectator role in the folding kinetics. The possibility of a productive metastable intermediate along the folding pathway consisting of collapsed states with no secondary structure, and of intermediates or transition structures involving secondary structural elements occurring early in the sequence, is also supported by our model. The kinetics of folding remain multi‐exponential below the folding temperature, with glass‐like kinetics appearing at T/Tf ∼ 0.86. This new physicochemical model, designed to be predictive, helps validate the value of modeling protein folding at this level of detail for genomic‐scale studies, and motivates further studies of other protein topologies and the impact of more complex energy functions, such as the addition of solvation forces. Proteins 2002;46:368–379. © 2002 Wiley‐Liss, Inc.</description><subject>Amino Acid Sequence</subject><subject>Animals</subject><subject>Computer Simulation</subject><subject>Kinetics</subject><subject>Models, Molecular</subject><subject>Models, Theoretical</subject><subject>multi-state kinetics</subject><subject>multiple histogram method</subject><subject>off-lattice models</subject><subject>Protein Folding</subject><subject>Protein Structure, Secondary</subject><subject>Proteins - chemistry</subject><subject>Thermodynamics</subject><subject>ubiquitin</subject><subject>Ubiquitin - chemistry</subject><subject>α/β proteins</subject><issn>0887-3585</issn><issn>1097-0134</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kE1PwjAYgBujEUQP_gGzk4mHQV_arps3JYgmRPzAeGy6rTOVjkG7Bfn3btnUk6ce-rxP-z4InQMeAsbj0cYW5RCA0wPUBxxxHwOhh6iPw5D7hIWsh06c-8QYBxEJjlEPICSMwbiPpstiJ23q5Xqtc2m0K728SJVxXpF5RtoPZb1Gr_TaXXs3XhXrbaVLvfaNXqmfq1N0lEnj1Fl3DtDb3XQ5uffni9nD5GbuJ4RF1E-AAYwZhVQRRSEJgMhUJhGJWBgHiYKUggKIiWTAIY5wSDMZA5ckJYSSiAzQZeut391WypUi1y5Rxsi1KionOFDGaEBr8KoFE1s4Z1UmNrbez-4FYNE0E83PRdOsZi86aRXnKv0ju0g1MGqBnTZq_79JPL0slp3Sbyfqnurrd0LalQg44Uy8P87ELeevz3UXEZJvdWyE8w</recordid><startdate>20020301</startdate><enddate>20020301</enddate><creator>Sorenson, Jon M.</creator><creator>Head-Gordon, Teresa</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20020301</creationdate><title>Toward minimalist models of larger proteins: A ubiquitin-like protein</title><author>Sorenson, Jon M. ; Head-Gordon, Teresa</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3594-c15112541de3e41c613adac93958b6ce1d41e11b3a5171b9084fab17a3d334393</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Amino Acid Sequence</topic><topic>Animals</topic><topic>Computer Simulation</topic><topic>Kinetics</topic><topic>Models, Molecular</topic><topic>Models, Theoretical</topic><topic>multi-state kinetics</topic><topic>multiple histogram method</topic><topic>off-lattice models</topic><topic>Protein Folding</topic><topic>Protein Structure, Secondary</topic><topic>Proteins - chemistry</topic><topic>Thermodynamics</topic><topic>ubiquitin</topic><topic>Ubiquitin - chemistry</topic><topic>α/β proteins</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sorenson, Jon M.</creatorcontrib><creatorcontrib>Head-Gordon, Teresa</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Proteins, structure, function, and bioinformatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sorenson, Jon M.</au><au>Head-Gordon, Teresa</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Toward minimalist models of larger proteins: A ubiquitin-like protein</atitle><jtitle>Proteins, structure, function, and bioinformatics</jtitle><addtitle>Proteins</addtitle><date>2002-03-01</date><risdate>2002</risdate><volume>46</volume><issue>4</issue><spage>368</spage><epage>379</epage><pages>368-379</pages><issn>0887-3585</issn><eissn>1097-0134</eissn><abstract>Our recently developed off‐lattice bead model capable of simulating protein structures with mixed α/β content has been extended to model the folding of a ubiquitin‐like protein and provides a means for examining the more complex kinetics involved in the folding of larger proteins. Using trajectories generated from constant‐temperature Langevin dynamics simulations and sampling with the multiple multi‐histogram method over five‐order parameters, we are able to characterize the free energy landscape for folding and find evidence for folding through compact intermediates. Our model reproduces the observation that the C‐terminus loop structure in ubiquitin is the last to fold in the folding process and most likely plays a spectator role in the folding kinetics. The possibility of a productive metastable intermediate along the folding pathway consisting of collapsed states with no secondary structure, and of intermediates or transition structures involving secondary structural elements occurring early in the sequence, is also supported by our model. The kinetics of folding remain multi‐exponential below the folding temperature, with glass‐like kinetics appearing at T/Tf ∼ 0.86. This new physicochemical model, designed to be predictive, helps validate the value of modeling protein folding at this level of detail for genomic‐scale studies, and motivates further studies of other protein topologies and the impact of more complex energy functions, such as the addition of solvation forces. Proteins 2002;46:368–379. © 2002 Wiley‐Liss, Inc.</abstract><cop>New York</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><pmid>11835512</pmid><doi>10.1002/prot.1174</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0887-3585
ispartof Proteins, structure, function, and bioinformatics, 2002-03, Vol.46 (4), p.368-379
issn 0887-3585
1097-0134
language eng
recordid cdi_proquest_miscellaneous_71455464
source MEDLINE; Wiley Online Library Journals Frontfile Complete
subjects Amino Acid Sequence
Animals
Computer Simulation
Kinetics
Models, Molecular
Models, Theoretical
multi-state kinetics
multiple histogram method
off-lattice models
Protein Folding
Protein Structure, Secondary
Proteins - chemistry
Thermodynamics
ubiquitin
Ubiquitin - chemistry
α/β proteins
title Toward minimalist models of larger proteins: A ubiquitin-like protein
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T11%3A53%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Toward%20minimalist%20models%20of%20larger%20proteins:%20A%20ubiquitin-like%20protein&rft.jtitle=Proteins,%20structure,%20function,%20and%20bioinformatics&rft.au=Sorenson,%20Jon%20M.&rft.date=2002-03-01&rft.volume=46&rft.issue=4&rft.spage=368&rft.epage=379&rft.pages=368-379&rft.issn=0887-3585&rft.eissn=1097-0134&rft_id=info:doi/10.1002/prot.1174&rft_dat=%3Cproquest_cross%3E71455464%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=71455464&rft_id=info:pmid/11835512&rfr_iscdi=true