Xist expression and macroH2A1.2 localisation in mouse primordial and pluripotent embryonic germ cells
The molecular mechanism underlying X chromosome inactivation in female mammals involves the non-coding RNAs Xist and its antisense partner Tsix. Prior to X inactivation, these RNAs are transcribed in an unstable form from all X chromosomes, both in the early embryo and in undifferentiated embryonic...
Gespeichert in:
Veröffentlicht in: | Differentiation (London) 2002, Vol.69 (4), p.216-225 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 225 |
---|---|
container_issue | 4 |
container_start_page | 216 |
container_title | Differentiation (London) |
container_volume | 69 |
creator | Nesterova, Tatyana B. Mermoud, Jacqueline E. Hilton, Kathy Pehrson, John Surani, M. Azim McLaren, Anne Brockdorff, Neil |
description | The molecular mechanism underlying X chromosome inactivation in female mammals involves the non-coding RNAs
Xist and its antisense partner
Tsix. Prior to X inactivation, these RNAs are transcribed in an unstable form from all X chromosomes, both in the early embryo and in undifferentiated embryonic stem (ES) cells. Upon differentiation, the expression of these unstable transcripts from all alleles is silenced, and
Xist RNA becomes stabilised specifically on the inactivating X chromosome. This pattern of expression is then maintained throughout subsequent somatic cell divisions. Once established, the inactive state of the X chromosome is remarkably stable, the only natural case of reactivation occurring in XX primordial germ cells (PGCs) when they enter the genital ridge. To gain insight into the X reactivation process, we have analysed
Xist gene expression using RNA FISH in PGCs and also in PGC-derived embryonic germ (EG) cells. XX EG cells were shown to express unstable
Xist/Tsix from both X chromosomes. In contrast, no unstable
Xist/Tsix transcripts were detected in XX PGCs at any stage. Instead, a proportion of XX PGCs isolated from the genital ridge between 11.5 and 13.5 dpc (the period during which X chromosome reactivation occurs) showed an accumulation of stable
Xist RNA on one X. The number of these cells decreased progressively and was nearly extinguished by 13.5 dpc. As a late marker for the inactive state, we analysed localisation of the histone H2A variant macroH2A1.2. Although macroH2A1.2 expression was observed in PGCs, no significant localisation to the inactive X was detected at any stage. We discuss these results in the context of understanding X chromosome reactivation. |
doi_str_mv | 10.1046/j.1432-0436.2002.690415.x |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_71454501</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0301468109603753</els_id><sourcerecordid>71454501</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4305-b20cbd0eea909d6cc826526788fa50ff8797c8190fa093e61c40b2c0b3f3c9c83</originalsourceid><addsrcrecordid>eNqNkM1OwzAQhC0EgvLzCihcuCWsHcd1bqBCAQmJC0jcLMfZIFdJHOwU2rcnIRVcOXmlnRnPfoRcUEgocHG1SihPWQw8FQkDYInIgdMs2eyR2e9mn8wgBRpzIekROQ5hBQBSMHpIjiiVnHIJM4JvNvQRbjqPIVjXRroto0Yb7x7YDU1YVDujaxt0Py5tGzVuHTDqvG2cL62ufwxdvfa2cz22Q1ZT-K1rrYne0TeRwboOp-Sg0nXAs917Ql6Xdy-Lh_jp-f5xcfMUG55CFhcMTFECos4hL4UxkomMibmUlc6gquQ8nxtJc6g05CkKajgUzECRVqnJjUxPyOWU23n3scbQq8aGsYFuceit5pRnPAM6CPNJOBwagsdKjRdpv1UU1MhYrdRIUo0k1chYTYzVZvCe7z5ZFw2Wf84d1EFwPQm-bI3b_yer28flNA8RiykCB1qfFr0KxmJrsLQeTa9KZ__R9BuTG6Fy</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>71454501</pqid></control><display><type>article</type><title>Xist expression and macroH2A1.2 localisation in mouse primordial and pluripotent embryonic germ cells</title><source>MEDLINE</source><source>ScienceDirect Journals (5 years ago - present)</source><source>Wiley Online Library All Journals</source><creator>Nesterova, Tatyana B. ; Mermoud, Jacqueline E. ; Hilton, Kathy ; Pehrson, John ; Surani, M. Azim ; McLaren, Anne ; Brockdorff, Neil</creator><creatorcontrib>Nesterova, Tatyana B. ; Mermoud, Jacqueline E. ; Hilton, Kathy ; Pehrson, John ; Surani, M. Azim ; McLaren, Anne ; Brockdorff, Neil</creatorcontrib><description>The molecular mechanism underlying X chromosome inactivation in female mammals involves the non-coding RNAs
Xist and its antisense partner
Tsix. Prior to X inactivation, these RNAs are transcribed in an unstable form from all X chromosomes, both in the early embryo and in undifferentiated embryonic stem (ES) cells. Upon differentiation, the expression of these unstable transcripts from all alleles is silenced, and
Xist RNA becomes stabilised specifically on the inactivating X chromosome. This pattern of expression is then maintained throughout subsequent somatic cell divisions. Once established, the inactive state of the X chromosome is remarkably stable, the only natural case of reactivation occurring in XX primordial germ cells (PGCs) when they enter the genital ridge. To gain insight into the X reactivation process, we have analysed
Xist gene expression using RNA FISH in PGCs and also in PGC-derived embryonic germ (EG) cells. XX EG cells were shown to express unstable
Xist/Tsix from both X chromosomes. In contrast, no unstable
Xist/Tsix transcripts were detected in XX PGCs at any stage. Instead, a proportion of XX PGCs isolated from the genital ridge between 11.5 and 13.5 dpc (the period during which X chromosome reactivation occurs) showed an accumulation of stable
Xist RNA on one X. The number of these cells decreased progressively and was nearly extinguished by 13.5 dpc. As a late marker for the inactive state, we analysed localisation of the histone H2A variant macroH2A1.2. Although macroH2A1.2 expression was observed in PGCs, no significant localisation to the inactive X was detected at any stage. We discuss these results in the context of understanding X chromosome reactivation.</description><identifier>ISSN: 0301-4681</identifier><identifier>EISSN: 1432-0436</identifier><identifier>DOI: 10.1046/j.1432-0436.2002.690415.x</identifier><identifier>PMID: 11841480</identifier><language>eng</language><publisher>Berlin/Wien: Elsevier B.V</publisher><subject>Animals ; Cell Differentiation ; Cell Line ; Crosses, Genetic ; EG cells ; Female ; Germ Cells - chemistry ; Germ Cells - growth & development ; Germ Cells - metabolism ; Histones - analysis ; In Situ Hybridization, Fluorescence ; macroH2A1.2 ; Male ; Mice ; Mice, Inbred Strains ; Mice, Transgenic ; primordial germ cell ; RNA, Long Noncoding ; RNA, Messenger - biosynthesis ; RNA, Untranslated - genetics ; RNA, Untranslated - metabolism ; Transcription Factors - genetics ; Transcription Factors - metabolism ; X Chromosome ; X inactivation ; Xist</subject><ispartof>Differentiation (London), 2002, Vol.69 (4), p.216-225</ispartof><rights>2002 International Society of Differentiation</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4305-b20cbd0eea909d6cc826526788fa50ff8797c8190fa093e61c40b2c0b3f3c9c83</citedby><cites>FETCH-LOGICAL-c4305-b20cbd0eea909d6cc826526788fa50ff8797c8190fa093e61c40b2c0b3f3c9c83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1046%2Fj.1432-0436.2002.690415.x$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://dx.doi.org/10.1046/j.1432-0436.2002.690415.x$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,1417,3550,4024,27923,27924,27925,45574,45575,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/11841480$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Nesterova, Tatyana B.</creatorcontrib><creatorcontrib>Mermoud, Jacqueline E.</creatorcontrib><creatorcontrib>Hilton, Kathy</creatorcontrib><creatorcontrib>Pehrson, John</creatorcontrib><creatorcontrib>Surani, M. Azim</creatorcontrib><creatorcontrib>McLaren, Anne</creatorcontrib><creatorcontrib>Brockdorff, Neil</creatorcontrib><title>Xist expression and macroH2A1.2 localisation in mouse primordial and pluripotent embryonic germ cells</title><title>Differentiation (London)</title><addtitle>Differentiation</addtitle><description>The molecular mechanism underlying X chromosome inactivation in female mammals involves the non-coding RNAs
Xist and its antisense partner
Tsix. Prior to X inactivation, these RNAs are transcribed in an unstable form from all X chromosomes, both in the early embryo and in undifferentiated embryonic stem (ES) cells. Upon differentiation, the expression of these unstable transcripts from all alleles is silenced, and
Xist RNA becomes stabilised specifically on the inactivating X chromosome. This pattern of expression is then maintained throughout subsequent somatic cell divisions. Once established, the inactive state of the X chromosome is remarkably stable, the only natural case of reactivation occurring in XX primordial germ cells (PGCs) when they enter the genital ridge. To gain insight into the X reactivation process, we have analysed
Xist gene expression using RNA FISH in PGCs and also in PGC-derived embryonic germ (EG) cells. XX EG cells were shown to express unstable
Xist/Tsix from both X chromosomes. In contrast, no unstable
Xist/Tsix transcripts were detected in XX PGCs at any stage. Instead, a proportion of XX PGCs isolated from the genital ridge between 11.5 and 13.5 dpc (the period during which X chromosome reactivation occurs) showed an accumulation of stable
Xist RNA on one X. The number of these cells decreased progressively and was nearly extinguished by 13.5 dpc. As a late marker for the inactive state, we analysed localisation of the histone H2A variant macroH2A1.2. Although macroH2A1.2 expression was observed in PGCs, no significant localisation to the inactive X was detected at any stage. We discuss these results in the context of understanding X chromosome reactivation.</description><subject>Animals</subject><subject>Cell Differentiation</subject><subject>Cell Line</subject><subject>Crosses, Genetic</subject><subject>EG cells</subject><subject>Female</subject><subject>Germ Cells - chemistry</subject><subject>Germ Cells - growth & development</subject><subject>Germ Cells - metabolism</subject><subject>Histones - analysis</subject><subject>In Situ Hybridization, Fluorescence</subject><subject>macroH2A1.2</subject><subject>Male</subject><subject>Mice</subject><subject>Mice, Inbred Strains</subject><subject>Mice, Transgenic</subject><subject>primordial germ cell</subject><subject>RNA, Long Noncoding</subject><subject>RNA, Messenger - biosynthesis</subject><subject>RNA, Untranslated - genetics</subject><subject>RNA, Untranslated - metabolism</subject><subject>Transcription Factors - genetics</subject><subject>Transcription Factors - metabolism</subject><subject>X Chromosome</subject><subject>X inactivation</subject><subject>Xist</subject><issn>0301-4681</issn><issn>1432-0436</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkM1OwzAQhC0EgvLzCihcuCWsHcd1bqBCAQmJC0jcLMfZIFdJHOwU2rcnIRVcOXmlnRnPfoRcUEgocHG1SihPWQw8FQkDYInIgdMs2eyR2e9mn8wgBRpzIekROQ5hBQBSMHpIjiiVnHIJM4JvNvQRbjqPIVjXRroto0Yb7x7YDU1YVDujaxt0Py5tGzVuHTDqvG2cL62ufwxdvfa2cz22Q1ZT-K1rrYne0TeRwboOp-Sg0nXAs917Ql6Xdy-Lh_jp-f5xcfMUG55CFhcMTFECos4hL4UxkomMibmUlc6gquQ8nxtJc6g05CkKajgUzECRVqnJjUxPyOWU23n3scbQq8aGsYFuceit5pRnPAM6CPNJOBwagsdKjRdpv1UU1MhYrdRIUo0k1chYTYzVZvCe7z5ZFw2Wf84d1EFwPQm-bI3b_yer28flNA8RiykCB1qfFr0KxmJrsLQeTa9KZ__R9BuTG6Fy</recordid><startdate>2002</startdate><enddate>2002</enddate><creator>Nesterova, Tatyana B.</creator><creator>Mermoud, Jacqueline E.</creator><creator>Hilton, Kathy</creator><creator>Pehrson, John</creator><creator>Surani, M. Azim</creator><creator>McLaren, Anne</creator><creator>Brockdorff, Neil</creator><general>Elsevier B.V</general><general>Blackwell Wissenschafts‐Verlag</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>2002</creationdate><title>Xist expression and macroH2A1.2 localisation in mouse primordial and pluripotent embryonic germ cells</title><author>Nesterova, Tatyana B. ; Mermoud, Jacqueline E. ; Hilton, Kathy ; Pehrson, John ; Surani, M. Azim ; McLaren, Anne ; Brockdorff, Neil</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4305-b20cbd0eea909d6cc826526788fa50ff8797c8190fa093e61c40b2c0b3f3c9c83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Animals</topic><topic>Cell Differentiation</topic><topic>Cell Line</topic><topic>Crosses, Genetic</topic><topic>EG cells</topic><topic>Female</topic><topic>Germ Cells - chemistry</topic><topic>Germ Cells - growth & development</topic><topic>Germ Cells - metabolism</topic><topic>Histones - analysis</topic><topic>In Situ Hybridization, Fluorescence</topic><topic>macroH2A1.2</topic><topic>Male</topic><topic>Mice</topic><topic>Mice, Inbred Strains</topic><topic>Mice, Transgenic</topic><topic>primordial germ cell</topic><topic>RNA, Long Noncoding</topic><topic>RNA, Messenger - biosynthesis</topic><topic>RNA, Untranslated - genetics</topic><topic>RNA, Untranslated - metabolism</topic><topic>Transcription Factors - genetics</topic><topic>Transcription Factors - metabolism</topic><topic>X Chromosome</topic><topic>X inactivation</topic><topic>Xist</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nesterova, Tatyana B.</creatorcontrib><creatorcontrib>Mermoud, Jacqueline E.</creatorcontrib><creatorcontrib>Hilton, Kathy</creatorcontrib><creatorcontrib>Pehrson, John</creatorcontrib><creatorcontrib>Surani, M. Azim</creatorcontrib><creatorcontrib>McLaren, Anne</creatorcontrib><creatorcontrib>Brockdorff, Neil</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Differentiation (London)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nesterova, Tatyana B.</au><au>Mermoud, Jacqueline E.</au><au>Hilton, Kathy</au><au>Pehrson, John</au><au>Surani, M. Azim</au><au>McLaren, Anne</au><au>Brockdorff, Neil</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Xist expression and macroH2A1.2 localisation in mouse primordial and pluripotent embryonic germ cells</atitle><jtitle>Differentiation (London)</jtitle><addtitle>Differentiation</addtitle><date>2002</date><risdate>2002</risdate><volume>69</volume><issue>4</issue><spage>216</spage><epage>225</epage><pages>216-225</pages><issn>0301-4681</issn><eissn>1432-0436</eissn><abstract>The molecular mechanism underlying X chromosome inactivation in female mammals involves the non-coding RNAs
Xist and its antisense partner
Tsix. Prior to X inactivation, these RNAs are transcribed in an unstable form from all X chromosomes, both in the early embryo and in undifferentiated embryonic stem (ES) cells. Upon differentiation, the expression of these unstable transcripts from all alleles is silenced, and
Xist RNA becomes stabilised specifically on the inactivating X chromosome. This pattern of expression is then maintained throughout subsequent somatic cell divisions. Once established, the inactive state of the X chromosome is remarkably stable, the only natural case of reactivation occurring in XX primordial germ cells (PGCs) when they enter the genital ridge. To gain insight into the X reactivation process, we have analysed
Xist gene expression using RNA FISH in PGCs and also in PGC-derived embryonic germ (EG) cells. XX EG cells were shown to express unstable
Xist/Tsix from both X chromosomes. In contrast, no unstable
Xist/Tsix transcripts were detected in XX PGCs at any stage. Instead, a proportion of XX PGCs isolated from the genital ridge between 11.5 and 13.5 dpc (the period during which X chromosome reactivation occurs) showed an accumulation of stable
Xist RNA on one X. The number of these cells decreased progressively and was nearly extinguished by 13.5 dpc. As a late marker for the inactive state, we analysed localisation of the histone H2A variant macroH2A1.2. Although macroH2A1.2 expression was observed in PGCs, no significant localisation to the inactive X was detected at any stage. We discuss these results in the context of understanding X chromosome reactivation.</abstract><cop>Berlin/Wien</cop><pub>Elsevier B.V</pub><pmid>11841480</pmid><doi>10.1046/j.1432-0436.2002.690415.x</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0301-4681 |
ispartof | Differentiation (London), 2002, Vol.69 (4), p.216-225 |
issn | 0301-4681 1432-0436 |
language | eng |
recordid | cdi_proquest_miscellaneous_71454501 |
source | MEDLINE; ScienceDirect Journals (5 years ago - present); Wiley Online Library All Journals |
subjects | Animals Cell Differentiation Cell Line Crosses, Genetic EG cells Female Germ Cells - chemistry Germ Cells - growth & development Germ Cells - metabolism Histones - analysis In Situ Hybridization, Fluorescence macroH2A1.2 Male Mice Mice, Inbred Strains Mice, Transgenic primordial germ cell RNA, Long Noncoding RNA, Messenger - biosynthesis RNA, Untranslated - genetics RNA, Untranslated - metabolism Transcription Factors - genetics Transcription Factors - metabolism X Chromosome X inactivation Xist |
title | Xist expression and macroH2A1.2 localisation in mouse primordial and pluripotent embryonic germ cells |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T11%3A47%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Xist%20expression%20and%20macroH2A1.2%20localisation%20in%20mouse%20primordial%20and%20pluripotent%20embryonic%20germ%20cells&rft.jtitle=Differentiation%20(London)&rft.au=Nesterova,%20Tatyana%20B.&rft.date=2002&rft.volume=69&rft.issue=4&rft.spage=216&rft.epage=225&rft.pages=216-225&rft.issn=0301-4681&rft.eissn=1432-0436&rft_id=info:doi/10.1046/j.1432-0436.2002.690415.x&rft_dat=%3Cproquest_cross%3E71454501%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=71454501&rft_id=info:pmid/11841480&rft_els_id=S0301468109603753&rfr_iscdi=true |