Xist expression and macroH2A1.2 localisation in mouse primordial and pluripotent embryonic germ cells

The molecular mechanism underlying X chromosome inactivation in female mammals involves the non-coding RNAs Xist and its antisense partner Tsix. Prior to X inactivation, these RNAs are transcribed in an unstable form from all X chromosomes, both in the early embryo and in undifferentiated embryonic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Differentiation (London) 2002, Vol.69 (4), p.216-225
Hauptverfasser: Nesterova, Tatyana B., Mermoud, Jacqueline E., Hilton, Kathy, Pehrson, John, Surani, M. Azim, McLaren, Anne, Brockdorff, Neil
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 225
container_issue 4
container_start_page 216
container_title Differentiation (London)
container_volume 69
creator Nesterova, Tatyana B.
Mermoud, Jacqueline E.
Hilton, Kathy
Pehrson, John
Surani, M. Azim
McLaren, Anne
Brockdorff, Neil
description The molecular mechanism underlying X chromosome inactivation in female mammals involves the non-coding RNAs Xist and its antisense partner Tsix. Prior to X inactivation, these RNAs are transcribed in an unstable form from all X chromosomes, both in the early embryo and in undifferentiated embryonic stem (ES) cells. Upon differentiation, the expression of these unstable transcripts from all alleles is silenced, and Xist RNA becomes stabilised specifically on the inactivating X chromosome. This pattern of expression is then maintained throughout subsequent somatic cell divisions. Once established, the inactive state of the X chromosome is remarkably stable, the only natural case of reactivation occurring in XX primordial germ cells (PGCs) when they enter the genital ridge. To gain insight into the X reactivation process, we have analysed Xist gene expression using RNA FISH in PGCs and also in PGC-derived embryonic germ (EG) cells. XX EG cells were shown to express unstable Xist/Tsix from both X chromosomes. In contrast, no unstable Xist/Tsix transcripts were detected in XX PGCs at any stage. Instead, a proportion of XX PGCs isolated from the genital ridge between 11.5 and 13.5 dpc (the period during which X chromosome reactivation occurs) showed an accumulation of stable Xist RNA on one X. The number of these cells decreased progressively and was nearly extinguished by 13.5 dpc. As a late marker for the inactive state, we analysed localisation of the histone H2A variant macroH2A1.2. Although macroH2A1.2 expression was observed in PGCs, no significant localisation to the inactive X was detected at any stage. We discuss these results in the context of understanding X chromosome reactivation.
doi_str_mv 10.1046/j.1432-0436.2002.690415.x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_71454501</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0301468109603753</els_id><sourcerecordid>71454501</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4305-b20cbd0eea909d6cc826526788fa50ff8797c8190fa093e61c40b2c0b3f3c9c83</originalsourceid><addsrcrecordid>eNqNkM1OwzAQhC0EgvLzCihcuCWsHcd1bqBCAQmJC0jcLMfZIFdJHOwU2rcnIRVcOXmlnRnPfoRcUEgocHG1SihPWQw8FQkDYInIgdMs2eyR2e9mn8wgBRpzIekROQ5hBQBSMHpIjiiVnHIJM4JvNvQRbjqPIVjXRroto0Yb7x7YDU1YVDujaxt0Py5tGzVuHTDqvG2cL62ufwxdvfa2cz22Q1ZT-K1rrYne0TeRwboOp-Sg0nXAs917Ql6Xdy-Lh_jp-f5xcfMUG55CFhcMTFECos4hL4UxkomMibmUlc6gquQ8nxtJc6g05CkKajgUzECRVqnJjUxPyOWU23n3scbQq8aGsYFuceit5pRnPAM6CPNJOBwagsdKjRdpv1UU1MhYrdRIUo0k1chYTYzVZvCe7z5ZFw2Wf84d1EFwPQm-bI3b_yer28flNA8RiykCB1qfFr0KxmJrsLQeTa9KZ__R9BuTG6Fy</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>71454501</pqid></control><display><type>article</type><title>Xist expression and macroH2A1.2 localisation in mouse primordial and pluripotent embryonic germ cells</title><source>MEDLINE</source><source>ScienceDirect Journals (5 years ago - present)</source><source>Wiley Online Library All Journals</source><creator>Nesterova, Tatyana B. ; Mermoud, Jacqueline E. ; Hilton, Kathy ; Pehrson, John ; Surani, M. Azim ; McLaren, Anne ; Brockdorff, Neil</creator><creatorcontrib>Nesterova, Tatyana B. ; Mermoud, Jacqueline E. ; Hilton, Kathy ; Pehrson, John ; Surani, M. Azim ; McLaren, Anne ; Brockdorff, Neil</creatorcontrib><description>The molecular mechanism underlying X chromosome inactivation in female mammals involves the non-coding RNAs Xist and its antisense partner Tsix. Prior to X inactivation, these RNAs are transcribed in an unstable form from all X chromosomes, both in the early embryo and in undifferentiated embryonic stem (ES) cells. Upon differentiation, the expression of these unstable transcripts from all alleles is silenced, and Xist RNA becomes stabilised specifically on the inactivating X chromosome. This pattern of expression is then maintained throughout subsequent somatic cell divisions. Once established, the inactive state of the X chromosome is remarkably stable, the only natural case of reactivation occurring in XX primordial germ cells (PGCs) when they enter the genital ridge. To gain insight into the X reactivation process, we have analysed Xist gene expression using RNA FISH in PGCs and also in PGC-derived embryonic germ (EG) cells. XX EG cells were shown to express unstable Xist/Tsix from both X chromosomes. In contrast, no unstable Xist/Tsix transcripts were detected in XX PGCs at any stage. Instead, a proportion of XX PGCs isolated from the genital ridge between 11.5 and 13.5 dpc (the period during which X chromosome reactivation occurs) showed an accumulation of stable Xist RNA on one X. The number of these cells decreased progressively and was nearly extinguished by 13.5 dpc. As a late marker for the inactive state, we analysed localisation of the histone H2A variant macroH2A1.2. Although macroH2A1.2 expression was observed in PGCs, no significant localisation to the inactive X was detected at any stage. We discuss these results in the context of understanding X chromosome reactivation.</description><identifier>ISSN: 0301-4681</identifier><identifier>EISSN: 1432-0436</identifier><identifier>DOI: 10.1046/j.1432-0436.2002.690415.x</identifier><identifier>PMID: 11841480</identifier><language>eng</language><publisher>Berlin/Wien: Elsevier B.V</publisher><subject>Animals ; Cell Differentiation ; Cell Line ; Crosses, Genetic ; EG cells ; Female ; Germ Cells - chemistry ; Germ Cells - growth &amp; development ; Germ Cells - metabolism ; Histones - analysis ; In Situ Hybridization, Fluorescence ; macroH2A1.2 ; Male ; Mice ; Mice, Inbred Strains ; Mice, Transgenic ; primordial germ cell ; RNA, Long Noncoding ; RNA, Messenger - biosynthesis ; RNA, Untranslated - genetics ; RNA, Untranslated - metabolism ; Transcription Factors - genetics ; Transcription Factors - metabolism ; X Chromosome ; X inactivation ; Xist</subject><ispartof>Differentiation (London), 2002, Vol.69 (4), p.216-225</ispartof><rights>2002 International Society of Differentiation</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4305-b20cbd0eea909d6cc826526788fa50ff8797c8190fa093e61c40b2c0b3f3c9c83</citedby><cites>FETCH-LOGICAL-c4305-b20cbd0eea909d6cc826526788fa50ff8797c8190fa093e61c40b2c0b3f3c9c83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1046%2Fj.1432-0436.2002.690415.x$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://dx.doi.org/10.1046/j.1432-0436.2002.690415.x$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,1417,3550,4024,27923,27924,27925,45574,45575,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/11841480$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Nesterova, Tatyana B.</creatorcontrib><creatorcontrib>Mermoud, Jacqueline E.</creatorcontrib><creatorcontrib>Hilton, Kathy</creatorcontrib><creatorcontrib>Pehrson, John</creatorcontrib><creatorcontrib>Surani, M. Azim</creatorcontrib><creatorcontrib>McLaren, Anne</creatorcontrib><creatorcontrib>Brockdorff, Neil</creatorcontrib><title>Xist expression and macroH2A1.2 localisation in mouse primordial and pluripotent embryonic germ cells</title><title>Differentiation (London)</title><addtitle>Differentiation</addtitle><description>The molecular mechanism underlying X chromosome inactivation in female mammals involves the non-coding RNAs Xist and its antisense partner Tsix. Prior to X inactivation, these RNAs are transcribed in an unstable form from all X chromosomes, both in the early embryo and in undifferentiated embryonic stem (ES) cells. Upon differentiation, the expression of these unstable transcripts from all alleles is silenced, and Xist RNA becomes stabilised specifically on the inactivating X chromosome. This pattern of expression is then maintained throughout subsequent somatic cell divisions. Once established, the inactive state of the X chromosome is remarkably stable, the only natural case of reactivation occurring in XX primordial germ cells (PGCs) when they enter the genital ridge. To gain insight into the X reactivation process, we have analysed Xist gene expression using RNA FISH in PGCs and also in PGC-derived embryonic germ (EG) cells. XX EG cells were shown to express unstable Xist/Tsix from both X chromosomes. In contrast, no unstable Xist/Tsix transcripts were detected in XX PGCs at any stage. Instead, a proportion of XX PGCs isolated from the genital ridge between 11.5 and 13.5 dpc (the period during which X chromosome reactivation occurs) showed an accumulation of stable Xist RNA on one X. The number of these cells decreased progressively and was nearly extinguished by 13.5 dpc. As a late marker for the inactive state, we analysed localisation of the histone H2A variant macroH2A1.2. Although macroH2A1.2 expression was observed in PGCs, no significant localisation to the inactive X was detected at any stage. We discuss these results in the context of understanding X chromosome reactivation.</description><subject>Animals</subject><subject>Cell Differentiation</subject><subject>Cell Line</subject><subject>Crosses, Genetic</subject><subject>EG cells</subject><subject>Female</subject><subject>Germ Cells - chemistry</subject><subject>Germ Cells - growth &amp; development</subject><subject>Germ Cells - metabolism</subject><subject>Histones - analysis</subject><subject>In Situ Hybridization, Fluorescence</subject><subject>macroH2A1.2</subject><subject>Male</subject><subject>Mice</subject><subject>Mice, Inbred Strains</subject><subject>Mice, Transgenic</subject><subject>primordial germ cell</subject><subject>RNA, Long Noncoding</subject><subject>RNA, Messenger - biosynthesis</subject><subject>RNA, Untranslated - genetics</subject><subject>RNA, Untranslated - metabolism</subject><subject>Transcription Factors - genetics</subject><subject>Transcription Factors - metabolism</subject><subject>X Chromosome</subject><subject>X inactivation</subject><subject>Xist</subject><issn>0301-4681</issn><issn>1432-0436</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkM1OwzAQhC0EgvLzCihcuCWsHcd1bqBCAQmJC0jcLMfZIFdJHOwU2rcnIRVcOXmlnRnPfoRcUEgocHG1SihPWQw8FQkDYInIgdMs2eyR2e9mn8wgBRpzIekROQ5hBQBSMHpIjiiVnHIJM4JvNvQRbjqPIVjXRroto0Yb7x7YDU1YVDujaxt0Py5tGzVuHTDqvG2cL62ufwxdvfa2cz22Q1ZT-K1rrYne0TeRwboOp-Sg0nXAs917Ql6Xdy-Lh_jp-f5xcfMUG55CFhcMTFECos4hL4UxkomMibmUlc6gquQ8nxtJc6g05CkKajgUzECRVqnJjUxPyOWU23n3scbQq8aGsYFuceit5pRnPAM6CPNJOBwagsdKjRdpv1UU1MhYrdRIUo0k1chYTYzVZvCe7z5ZFw2Wf84d1EFwPQm-bI3b_yer28flNA8RiykCB1qfFr0KxmJrsLQeTa9KZ__R9BuTG6Fy</recordid><startdate>2002</startdate><enddate>2002</enddate><creator>Nesterova, Tatyana B.</creator><creator>Mermoud, Jacqueline E.</creator><creator>Hilton, Kathy</creator><creator>Pehrson, John</creator><creator>Surani, M. Azim</creator><creator>McLaren, Anne</creator><creator>Brockdorff, Neil</creator><general>Elsevier B.V</general><general>Blackwell Wissenschafts‐Verlag</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>2002</creationdate><title>Xist expression and macroH2A1.2 localisation in mouse primordial and pluripotent embryonic germ cells</title><author>Nesterova, Tatyana B. ; Mermoud, Jacqueline E. ; Hilton, Kathy ; Pehrson, John ; Surani, M. Azim ; McLaren, Anne ; Brockdorff, Neil</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4305-b20cbd0eea909d6cc826526788fa50ff8797c8190fa093e61c40b2c0b3f3c9c83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Animals</topic><topic>Cell Differentiation</topic><topic>Cell Line</topic><topic>Crosses, Genetic</topic><topic>EG cells</topic><topic>Female</topic><topic>Germ Cells - chemistry</topic><topic>Germ Cells - growth &amp; development</topic><topic>Germ Cells - metabolism</topic><topic>Histones - analysis</topic><topic>In Situ Hybridization, Fluorescence</topic><topic>macroH2A1.2</topic><topic>Male</topic><topic>Mice</topic><topic>Mice, Inbred Strains</topic><topic>Mice, Transgenic</topic><topic>primordial germ cell</topic><topic>RNA, Long Noncoding</topic><topic>RNA, Messenger - biosynthesis</topic><topic>RNA, Untranslated - genetics</topic><topic>RNA, Untranslated - metabolism</topic><topic>Transcription Factors - genetics</topic><topic>Transcription Factors - metabolism</topic><topic>X Chromosome</topic><topic>X inactivation</topic><topic>Xist</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nesterova, Tatyana B.</creatorcontrib><creatorcontrib>Mermoud, Jacqueline E.</creatorcontrib><creatorcontrib>Hilton, Kathy</creatorcontrib><creatorcontrib>Pehrson, John</creatorcontrib><creatorcontrib>Surani, M. Azim</creatorcontrib><creatorcontrib>McLaren, Anne</creatorcontrib><creatorcontrib>Brockdorff, Neil</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Differentiation (London)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nesterova, Tatyana B.</au><au>Mermoud, Jacqueline E.</au><au>Hilton, Kathy</au><au>Pehrson, John</au><au>Surani, M. Azim</au><au>McLaren, Anne</au><au>Brockdorff, Neil</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Xist expression and macroH2A1.2 localisation in mouse primordial and pluripotent embryonic germ cells</atitle><jtitle>Differentiation (London)</jtitle><addtitle>Differentiation</addtitle><date>2002</date><risdate>2002</risdate><volume>69</volume><issue>4</issue><spage>216</spage><epage>225</epage><pages>216-225</pages><issn>0301-4681</issn><eissn>1432-0436</eissn><abstract>The molecular mechanism underlying X chromosome inactivation in female mammals involves the non-coding RNAs Xist and its antisense partner Tsix. Prior to X inactivation, these RNAs are transcribed in an unstable form from all X chromosomes, both in the early embryo and in undifferentiated embryonic stem (ES) cells. Upon differentiation, the expression of these unstable transcripts from all alleles is silenced, and Xist RNA becomes stabilised specifically on the inactivating X chromosome. This pattern of expression is then maintained throughout subsequent somatic cell divisions. Once established, the inactive state of the X chromosome is remarkably stable, the only natural case of reactivation occurring in XX primordial germ cells (PGCs) when they enter the genital ridge. To gain insight into the X reactivation process, we have analysed Xist gene expression using RNA FISH in PGCs and also in PGC-derived embryonic germ (EG) cells. XX EG cells were shown to express unstable Xist/Tsix from both X chromosomes. In contrast, no unstable Xist/Tsix transcripts were detected in XX PGCs at any stage. Instead, a proportion of XX PGCs isolated from the genital ridge between 11.5 and 13.5 dpc (the period during which X chromosome reactivation occurs) showed an accumulation of stable Xist RNA on one X. The number of these cells decreased progressively and was nearly extinguished by 13.5 dpc. As a late marker for the inactive state, we analysed localisation of the histone H2A variant macroH2A1.2. Although macroH2A1.2 expression was observed in PGCs, no significant localisation to the inactive X was detected at any stage. We discuss these results in the context of understanding X chromosome reactivation.</abstract><cop>Berlin/Wien</cop><pub>Elsevier B.V</pub><pmid>11841480</pmid><doi>10.1046/j.1432-0436.2002.690415.x</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0301-4681
ispartof Differentiation (London), 2002, Vol.69 (4), p.216-225
issn 0301-4681
1432-0436
language eng
recordid cdi_proquest_miscellaneous_71454501
source MEDLINE; ScienceDirect Journals (5 years ago - present); Wiley Online Library All Journals
subjects Animals
Cell Differentiation
Cell Line
Crosses, Genetic
EG cells
Female
Germ Cells - chemistry
Germ Cells - growth & development
Germ Cells - metabolism
Histones - analysis
In Situ Hybridization, Fluorescence
macroH2A1.2
Male
Mice
Mice, Inbred Strains
Mice, Transgenic
primordial germ cell
RNA, Long Noncoding
RNA, Messenger - biosynthesis
RNA, Untranslated - genetics
RNA, Untranslated - metabolism
Transcription Factors - genetics
Transcription Factors - metabolism
X Chromosome
X inactivation
Xist
title Xist expression and macroH2A1.2 localisation in mouse primordial and pluripotent embryonic germ cells
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T11%3A47%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Xist%20expression%20and%20macroH2A1.2%20localisation%20in%20mouse%20primordial%20and%20pluripotent%20embryonic%20germ%20cells&rft.jtitle=Differentiation%20(London)&rft.au=Nesterova,%20Tatyana%20B.&rft.date=2002&rft.volume=69&rft.issue=4&rft.spage=216&rft.epage=225&rft.pages=216-225&rft.issn=0301-4681&rft.eissn=1432-0436&rft_id=info:doi/10.1046/j.1432-0436.2002.690415.x&rft_dat=%3Cproquest_cross%3E71454501%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=71454501&rft_id=info:pmid/11841480&rft_els_id=S0301468109603753&rfr_iscdi=true