Advanced methods in meta-analysis: multivariate approach and meta-regression

This tutorial on advanced statistical methods for meta‐analysis can be seen as a sequel to the recent Tutorial in Biostatistics on meta‐analysis by Normand, which focused on elementary methods. Within the framework of the general linear mixed model using approximate likelihood, we discuss methods to...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Statistics in medicine 2002-02, Vol.21 (4), p.589-624
Hauptverfasser: van Houwelingen, Hans C., Arends, Lidia R., Stijnen, Theo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 624
container_issue 4
container_start_page 589
container_title Statistics in medicine
container_volume 21
creator van Houwelingen, Hans C.
Arends, Lidia R.
Stijnen, Theo
description This tutorial on advanced statistical methods for meta‐analysis can be seen as a sequel to the recent Tutorial in Biostatistics on meta‐analysis by Normand, which focused on elementary methods. Within the framework of the general linear mixed model using approximate likelihood, we discuss methods to analyse univariate as well as bivariate treatment effects in meta‐analyses as well as meta‐regression methods. Several extensions of the models are discussed, like exact likelihood, non‐normal mixtures and multiple endpoints. We end with a discussion about the use of Bayesian methods in meta‐analysis. All methods are illustrated by a meta‐analysis concerning the efficacy of BCG vaccine against tuberculosis. All analyses that use approximate likelihood can be carried out by standard software. We demonstrate how the models can be fitted using SAS Proc Mixed. Copyright © 2002 John Wiley & Sons, Ltd.
doi_str_mv 10.1002/sim.1040
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_71453936</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>71453936</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4510-c936611b3c881932942e9dec97aa0dca328d53b9e6915705cd8c0fd64751a7113</originalsourceid><addsrcrecordid>eNp10E1P3DAQBmALFcEWKvUXoFyKegl44jiOewNUKOrypVK1N2vW9oLbfCyeLGX_fb3aqJx6mjk8mnf0MvYe-BFwXhxTaNNS8i02Aa5VzgtZv2ETXiiVVwrkLntL9ItzAFmoHbYLUItKiXrCpifuGTvrXdb64bF3lIVuvWKOHTYrCvQpa5fNEJ4xBhx8hotF7NE-Zti5DYz-IXqi0Hf7bHuODfl349xj388_3599yac3F5dnJ9PclhJ4brWoKoCZsHUNWhS6LLx23mqFyJ1FUdROipn2lQapuLSutnzuqlJJQAUg9tjh5m565WnpaTBtIOubBjvfL8koKKVIIQl-3EAbe6Lo52YRQ4txZYCbdXMmNWfWzSV6MN5czlrvXuFYVQIfRoBksZnHVFugVydKWUixfi7fuD-h8av_Bppvl1dj8OgDDf7ln8f426RcJc2P6wuj736ey9uvp-Ze_AVwPZLc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>71453936</pqid></control><display><type>article</type><title>Advanced methods in meta-analysis: multivariate approach and meta-regression</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>van Houwelingen, Hans C. ; Arends, Lidia R. ; Stijnen, Theo</creator><creatorcontrib>van Houwelingen, Hans C. ; Arends, Lidia R. ; Stijnen, Theo</creatorcontrib><description>This tutorial on advanced statistical methods for meta‐analysis can be seen as a sequel to the recent Tutorial in Biostatistics on meta‐analysis by Normand, which focused on elementary methods. Within the framework of the general linear mixed model using approximate likelihood, we discuss methods to analyse univariate as well as bivariate treatment effects in meta‐analyses as well as meta‐regression methods. Several extensions of the models are discussed, like exact likelihood, non‐normal mixtures and multiple endpoints. We end with a discussion about the use of Bayesian methods in meta‐analysis. All methods are illustrated by a meta‐analysis concerning the efficacy of BCG vaccine against tuberculosis. All analyses that use approximate likelihood can be carried out by standard software. We demonstrate how the models can be fitted using SAS Proc Mixed. Copyright © 2002 John Wiley &amp; Sons, Ltd.</description><identifier>ISSN: 0277-6715</identifier><identifier>EISSN: 1097-0258</identifier><identifier>DOI: 10.1002/sim.1040</identifier><identifier>PMID: 11836738</identifier><language>eng</language><publisher>Chichester, UK: John Wiley &amp; Sons, Ltd</publisher><subject>Bayes Theorem ; BCG Vaccine - immunology ; BCG Vaccine - standards ; Biological and medical sciences ; Computerized, statistical medical data processing and models in biomedicine ; Humans ; Medical sciences ; Medical statistics ; meta-analysis ; Meta-Analysis as Topic ; meta-regression ; Multivariate Analysis ; multivariate random effects models ; Statistics as Topic - methods ; Tuberculosis - prevention &amp; control</subject><ispartof>Statistics in medicine, 2002-02, Vol.21 (4), p.589-624</ispartof><rights>Copyright © 2002 John Wiley &amp; Sons, Ltd.</rights><rights>2002 INIST-CNRS</rights><rights>Copyright 2002 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4510-c936611b3c881932942e9dec97aa0dca328d53b9e6915705cd8c0fd64751a7113</citedby><cites>FETCH-LOGICAL-c4510-c936611b3c881932942e9dec97aa0dca328d53b9e6915705cd8c0fd64751a7113</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fsim.1040$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fsim.1040$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=13452531$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/11836738$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>van Houwelingen, Hans C.</creatorcontrib><creatorcontrib>Arends, Lidia R.</creatorcontrib><creatorcontrib>Stijnen, Theo</creatorcontrib><title>Advanced methods in meta-analysis: multivariate approach and meta-regression</title><title>Statistics in medicine</title><addtitle>Statist. Med</addtitle><description>This tutorial on advanced statistical methods for meta‐analysis can be seen as a sequel to the recent Tutorial in Biostatistics on meta‐analysis by Normand, which focused on elementary methods. Within the framework of the general linear mixed model using approximate likelihood, we discuss methods to analyse univariate as well as bivariate treatment effects in meta‐analyses as well as meta‐regression methods. Several extensions of the models are discussed, like exact likelihood, non‐normal mixtures and multiple endpoints. We end with a discussion about the use of Bayesian methods in meta‐analysis. All methods are illustrated by a meta‐analysis concerning the efficacy of BCG vaccine against tuberculosis. All analyses that use approximate likelihood can be carried out by standard software. We demonstrate how the models can be fitted using SAS Proc Mixed. Copyright © 2002 John Wiley &amp; Sons, Ltd.</description><subject>Bayes Theorem</subject><subject>BCG Vaccine - immunology</subject><subject>BCG Vaccine - standards</subject><subject>Biological and medical sciences</subject><subject>Computerized, statistical medical data processing and models in biomedicine</subject><subject>Humans</subject><subject>Medical sciences</subject><subject>Medical statistics</subject><subject>meta-analysis</subject><subject>Meta-Analysis as Topic</subject><subject>meta-regression</subject><subject>Multivariate Analysis</subject><subject>multivariate random effects models</subject><subject>Statistics as Topic - methods</subject><subject>Tuberculosis - prevention &amp; control</subject><issn>0277-6715</issn><issn>1097-0258</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp10E1P3DAQBmALFcEWKvUXoFyKegl44jiOewNUKOrypVK1N2vW9oLbfCyeLGX_fb3aqJx6mjk8mnf0MvYe-BFwXhxTaNNS8i02Aa5VzgtZv2ETXiiVVwrkLntL9ItzAFmoHbYLUItKiXrCpifuGTvrXdb64bF3lIVuvWKOHTYrCvQpa5fNEJ4xBhx8hotF7NE-Zti5DYz-IXqi0Hf7bHuODfl349xj388_3599yac3F5dnJ9PclhJ4brWoKoCZsHUNWhS6LLx23mqFyJ1FUdROipn2lQapuLSutnzuqlJJQAUg9tjh5m565WnpaTBtIOubBjvfL8koKKVIIQl-3EAbe6Lo52YRQ4txZYCbdXMmNWfWzSV6MN5czlrvXuFYVQIfRoBksZnHVFugVydKWUixfi7fuD-h8av_Bppvl1dj8OgDDf7ln8f426RcJc2P6wuj736ey9uvp-Ze_AVwPZLc</recordid><startdate>20020228</startdate><enddate>20020228</enddate><creator>van Houwelingen, Hans C.</creator><creator>Arends, Lidia R.</creator><creator>Stijnen, Theo</creator><general>John Wiley &amp; Sons, Ltd</general><general>Wiley</general><scope>BSCLL</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20020228</creationdate><title>Advanced methods in meta-analysis: multivariate approach and meta-regression</title><author>van Houwelingen, Hans C. ; Arends, Lidia R. ; Stijnen, Theo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4510-c936611b3c881932942e9dec97aa0dca328d53b9e6915705cd8c0fd64751a7113</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Bayes Theorem</topic><topic>BCG Vaccine - immunology</topic><topic>BCG Vaccine - standards</topic><topic>Biological and medical sciences</topic><topic>Computerized, statistical medical data processing and models in biomedicine</topic><topic>Humans</topic><topic>Medical sciences</topic><topic>Medical statistics</topic><topic>meta-analysis</topic><topic>Meta-Analysis as Topic</topic><topic>meta-regression</topic><topic>Multivariate Analysis</topic><topic>multivariate random effects models</topic><topic>Statistics as Topic - methods</topic><topic>Tuberculosis - prevention &amp; control</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>van Houwelingen, Hans C.</creatorcontrib><creatorcontrib>Arends, Lidia R.</creatorcontrib><creatorcontrib>Stijnen, Theo</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Statistics in medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>van Houwelingen, Hans C.</au><au>Arends, Lidia R.</au><au>Stijnen, Theo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Advanced methods in meta-analysis: multivariate approach and meta-regression</atitle><jtitle>Statistics in medicine</jtitle><addtitle>Statist. Med</addtitle><date>2002-02-28</date><risdate>2002</risdate><volume>21</volume><issue>4</issue><spage>589</spage><epage>624</epage><pages>589-624</pages><issn>0277-6715</issn><eissn>1097-0258</eissn><abstract>This tutorial on advanced statistical methods for meta‐analysis can be seen as a sequel to the recent Tutorial in Biostatistics on meta‐analysis by Normand, which focused on elementary methods. Within the framework of the general linear mixed model using approximate likelihood, we discuss methods to analyse univariate as well as bivariate treatment effects in meta‐analyses as well as meta‐regression methods. Several extensions of the models are discussed, like exact likelihood, non‐normal mixtures and multiple endpoints. We end with a discussion about the use of Bayesian methods in meta‐analysis. All methods are illustrated by a meta‐analysis concerning the efficacy of BCG vaccine against tuberculosis. All analyses that use approximate likelihood can be carried out by standard software. We demonstrate how the models can be fitted using SAS Proc Mixed. Copyright © 2002 John Wiley &amp; Sons, Ltd.</abstract><cop>Chichester, UK</cop><pub>John Wiley &amp; Sons, Ltd</pub><pmid>11836738</pmid><doi>10.1002/sim.1040</doi><tpages>36</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0277-6715
ispartof Statistics in medicine, 2002-02, Vol.21 (4), p.589-624
issn 0277-6715
1097-0258
language eng
recordid cdi_proquest_miscellaneous_71453936
source MEDLINE; Wiley Online Library Journals Frontfile Complete
subjects Bayes Theorem
BCG Vaccine - immunology
BCG Vaccine - standards
Biological and medical sciences
Computerized, statistical medical data processing and models in biomedicine
Humans
Medical sciences
Medical statistics
meta-analysis
Meta-Analysis as Topic
meta-regression
Multivariate Analysis
multivariate random effects models
Statistics as Topic - methods
Tuberculosis - prevention & control
title Advanced methods in meta-analysis: multivariate approach and meta-regression
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T06%3A08%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Advanced%20methods%20in%20meta-analysis:%20multivariate%20approach%20and%20meta-regression&rft.jtitle=Statistics%20in%20medicine&rft.au=van%20Houwelingen,%20Hans%20C.&rft.date=2002-02-28&rft.volume=21&rft.issue=4&rft.spage=589&rft.epage=624&rft.pages=589-624&rft.issn=0277-6715&rft.eissn=1097-0258&rft_id=info:doi/10.1002/sim.1040&rft_dat=%3Cproquest_cross%3E71453936%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=71453936&rft_id=info:pmid/11836738&rfr_iscdi=true