Stability and conformational dynamics of metallothioneins from the antarctic fish Notothenia coriiceps and mouse

The structural properties and the conformational dynamics of antarctic fish Notothenia coriiceps and mouse metallothioneins were studied by Fourier‐transform infrared and fluorescence spectroscopy. Infrared data revealed that the secondary structure of the two metallothioneins is similar to that of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proteins, structure, function, and bioinformatics structure, function, and bioinformatics, 2002-02, Vol.46 (3), p.259-267
Hauptverfasser: Capasso, Clemente, Abugo, Omoefe, Tanfani, Fabio, Scire, Andrea, Carginale, Vincenzo, Scudiero, Rosaria, Parisi, Elio, D'Auria, Sabato
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 267
container_issue 3
container_start_page 259
container_title Proteins, structure, function, and bioinformatics
container_volume 46
creator Capasso, Clemente
Abugo, Omoefe
Tanfani, Fabio
Scire, Andrea
Carginale, Vincenzo
Scudiero, Rosaria
Parisi, Elio
D'Auria, Sabato
description The structural properties and the conformational dynamics of antarctic fish Notothenia coriiceps and mouse metallothioneins were studied by Fourier‐transform infrared and fluorescence spectroscopy. Infrared data revealed that the secondary structure of the two metallothioneins is similar to that of other metallothioneins, most of which lack periodical secondary structure elements such as α‐helices and β‐sheets. However, the infrared spectra of the N. coriiceps metallothionein indicated the presence of a band, which for its typical position in the spectrum and for its sensitivity to temperature was assigned to α‐helices whose content resulted in 5% of the total secondary structure of the protein. The short α‐helix found in N. coriiceps metallothionein showed an onset of denaturation at 30°C and a Tm at 48°C. The data suggest that in N. coriiceps metallothionein a particular cysteine is involved in the α‐helix and in the metal‐thiolate complex. Moreover, infrared spectra revealed that both proteins investigated possess a structure largely accessible to the solvent. The time‐resolved fluorescence data show that N. coriiceps metallothionein possesses a more flexible structure than mouse metallothionein. The spectroscopic data are discussed in terms of the biological function of the metallothioneins. Proteins 2002;46:259–267. © 2002 Wiley‐Liss, Inc.
doi_str_mv 10.1002/prot.10050
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_71448790</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>71448790</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3940-bb652f2a6d0ae1676517fba8bbb7e611f96e3ff937e13a272a6348cb916e8fb23</originalsourceid><addsrcrecordid>eNqFkUFPHCEYhklTU1fbS39Aw6kHk1EYZoA5NkZXE7MatfVIgP3I0s4MW2Cj--9l3VVv7QkSnvcJeV-EvlJyTAmpT5Yx5M2tJR_QhJJOVISy5iOaEClFxVrZ7qODlH4TQnjH-Ce0T6lkbUvoBC3vsja-93mN9TjHNowuxEFnH0bd4_l61IO3CQeHB8i670NelCfwY8IuhgHnBZRg1tFmb7HzaYFnIRcKRq-LLnpvYZle5ENYJfiM9pzuE3zZnYfo5_nZ_elFdXU9vTz9cVVZ1jWkMoa3tas1nxMNlAveUuGMlsYYAZxS13FgznVMAGW6FoVkjbSmoxykMzU7RN-33tLO3xWkrAafLPS9HqH8QwnaNFJ05L9gqUqIumEFPNqCNoaUIji1jH7Qca0oUZsh1GYI9TJEgb_trCszwPwd3TVfALoFHn0P63-o1M3t9f2rtNpmfMrw9JbR8Y_igolWPcymSvwSspsRph7YM48upNE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>18377243</pqid></control><display><type>article</type><title>Stability and conformational dynamics of metallothioneins from the antarctic fish Notothenia coriiceps and mouse</title><source>MEDLINE</source><source>Access via Wiley Online Library</source><creator>Capasso, Clemente ; Abugo, Omoefe ; Tanfani, Fabio ; Scire, Andrea ; Carginale, Vincenzo ; Scudiero, Rosaria ; Parisi, Elio ; D'Auria, Sabato</creator><creatorcontrib>Capasso, Clemente ; Abugo, Omoefe ; Tanfani, Fabio ; Scire, Andrea ; Carginale, Vincenzo ; Scudiero, Rosaria ; Parisi, Elio ; D'Auria, Sabato</creatorcontrib><description>The structural properties and the conformational dynamics of antarctic fish Notothenia coriiceps and mouse metallothioneins were studied by Fourier‐transform infrared and fluorescence spectroscopy. Infrared data revealed that the secondary structure of the two metallothioneins is similar to that of other metallothioneins, most of which lack periodical secondary structure elements such as α‐helices and β‐sheets. However, the infrared spectra of the N. coriiceps metallothionein indicated the presence of a band, which for its typical position in the spectrum and for its sensitivity to temperature was assigned to α‐helices whose content resulted in 5% of the total secondary structure of the protein. The short α‐helix found in N. coriiceps metallothionein showed an onset of denaturation at 30°C and a Tm at 48°C. The data suggest that in N. coriiceps metallothionein a particular cysteine is involved in the α‐helix and in the metal‐thiolate complex. Moreover, infrared spectra revealed that both proteins investigated possess a structure largely accessible to the solvent. The time‐resolved fluorescence data show that N. coriiceps metallothionein possesses a more flexible structure than mouse metallothionein. The spectroscopic data are discussed in terms of the biological function of the metallothioneins. Proteins 2002;46:259–267. © 2002 Wiley‐Liss, Inc.</description><identifier>ISSN: 0887-3585</identifier><identifier>EISSN: 1097-0134</identifier><identifier>DOI: 10.1002/prot.10050</identifier><identifier>PMID: 11835501</identifier><language>eng</language><publisher>New York: John Wiley &amp; Sons, Inc</publisher><subject>Animals ; antarctic fish ; Fishes ; infrared spectroscopy ; metallothionein ; Metallothionein - chemistry ; Metallothionein - isolation &amp; purification ; Mice ; Notothenia coriiceps ; Protein Conformation ; Protein Denaturation ; protein structure ; Protein Structure, Secondary ; rat ; Spectrometry, Fluorescence ; Spectroscopy, Fourier Transform Infrared ; Thermodynamics</subject><ispartof>Proteins, structure, function, and bioinformatics, 2002-02, Vol.46 (3), p.259-267</ispartof><rights>Copyright © 2002 Wiley‐Liss, Inc.</rights><rights>Copyright 2002 Wiley Liss, Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3940-bb652f2a6d0ae1676517fba8bbb7e611f96e3ff937e13a272a6348cb916e8fb23</citedby><cites>FETCH-LOGICAL-c3940-bb652f2a6d0ae1676517fba8bbb7e611f96e3ff937e13a272a6348cb916e8fb23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fprot.10050$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fprot.10050$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/11835501$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Capasso, Clemente</creatorcontrib><creatorcontrib>Abugo, Omoefe</creatorcontrib><creatorcontrib>Tanfani, Fabio</creatorcontrib><creatorcontrib>Scire, Andrea</creatorcontrib><creatorcontrib>Carginale, Vincenzo</creatorcontrib><creatorcontrib>Scudiero, Rosaria</creatorcontrib><creatorcontrib>Parisi, Elio</creatorcontrib><creatorcontrib>D'Auria, Sabato</creatorcontrib><title>Stability and conformational dynamics of metallothioneins from the antarctic fish Notothenia coriiceps and mouse</title><title>Proteins, structure, function, and bioinformatics</title><addtitle>Proteins</addtitle><description>The structural properties and the conformational dynamics of antarctic fish Notothenia coriiceps and mouse metallothioneins were studied by Fourier‐transform infrared and fluorescence spectroscopy. Infrared data revealed that the secondary structure of the two metallothioneins is similar to that of other metallothioneins, most of which lack periodical secondary structure elements such as α‐helices and β‐sheets. However, the infrared spectra of the N. coriiceps metallothionein indicated the presence of a band, which for its typical position in the spectrum and for its sensitivity to temperature was assigned to α‐helices whose content resulted in 5% of the total secondary structure of the protein. The short α‐helix found in N. coriiceps metallothionein showed an onset of denaturation at 30°C and a Tm at 48°C. The data suggest that in N. coriiceps metallothionein a particular cysteine is involved in the α‐helix and in the metal‐thiolate complex. Moreover, infrared spectra revealed that both proteins investigated possess a structure largely accessible to the solvent. The time‐resolved fluorescence data show that N. coriiceps metallothionein possesses a more flexible structure than mouse metallothionein. The spectroscopic data are discussed in terms of the biological function of the metallothioneins. Proteins 2002;46:259–267. © 2002 Wiley‐Liss, Inc.</description><subject>Animals</subject><subject>antarctic fish</subject><subject>Fishes</subject><subject>infrared spectroscopy</subject><subject>metallothionein</subject><subject>Metallothionein - chemistry</subject><subject>Metallothionein - isolation &amp; purification</subject><subject>Mice</subject><subject>Notothenia coriiceps</subject><subject>Protein Conformation</subject><subject>Protein Denaturation</subject><subject>protein structure</subject><subject>Protein Structure, Secondary</subject><subject>rat</subject><subject>Spectrometry, Fluorescence</subject><subject>Spectroscopy, Fourier Transform Infrared</subject><subject>Thermodynamics</subject><issn>0887-3585</issn><issn>1097-0134</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkUFPHCEYhklTU1fbS39Aw6kHk1EYZoA5NkZXE7MatfVIgP3I0s4MW2Cj--9l3VVv7QkSnvcJeV-EvlJyTAmpT5Yx5M2tJR_QhJJOVISy5iOaEClFxVrZ7qODlH4TQnjH-Ce0T6lkbUvoBC3vsja-93mN9TjHNowuxEFnH0bd4_l61IO3CQeHB8i670NelCfwY8IuhgHnBZRg1tFmb7HzaYFnIRcKRq-LLnpvYZle5ENYJfiM9pzuE3zZnYfo5_nZ_elFdXU9vTz9cVVZ1jWkMoa3tas1nxMNlAveUuGMlsYYAZxS13FgznVMAGW6FoVkjbSmoxykMzU7RN-33tLO3xWkrAafLPS9HqH8QwnaNFJ05L9gqUqIumEFPNqCNoaUIji1jH7Qca0oUZsh1GYI9TJEgb_trCszwPwd3TVfALoFHn0P63-o1M3t9f2rtNpmfMrw9JbR8Y_igolWPcymSvwSspsRph7YM48upNE</recordid><startdate>20020215</startdate><enddate>20020215</enddate><creator>Capasso, Clemente</creator><creator>Abugo, Omoefe</creator><creator>Tanfani, Fabio</creator><creator>Scire, Andrea</creator><creator>Carginale, Vincenzo</creator><creator>Scudiero, Rosaria</creator><creator>Parisi, Elio</creator><creator>D'Auria, Sabato</creator><general>John Wiley &amp; Sons, Inc</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>F1W</scope><scope>FR3</scope><scope>H95</scope><scope>H99</scope><scope>L.F</scope><scope>L.G</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>20020215</creationdate><title>Stability and conformational dynamics of metallothioneins from the antarctic fish Notothenia coriiceps and mouse</title><author>Capasso, Clemente ; Abugo, Omoefe ; Tanfani, Fabio ; Scire, Andrea ; Carginale, Vincenzo ; Scudiero, Rosaria ; Parisi, Elio ; D'Auria, Sabato</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3940-bb652f2a6d0ae1676517fba8bbb7e611f96e3ff937e13a272a6348cb916e8fb23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Animals</topic><topic>antarctic fish</topic><topic>Fishes</topic><topic>infrared spectroscopy</topic><topic>metallothionein</topic><topic>Metallothionein - chemistry</topic><topic>Metallothionein - isolation &amp; purification</topic><topic>Mice</topic><topic>Notothenia coriiceps</topic><topic>Protein Conformation</topic><topic>Protein Denaturation</topic><topic>protein structure</topic><topic>Protein Structure, Secondary</topic><topic>rat</topic><topic>Spectrometry, Fluorescence</topic><topic>Spectroscopy, Fourier Transform Infrared</topic><topic>Thermodynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Capasso, Clemente</creatorcontrib><creatorcontrib>Abugo, Omoefe</creatorcontrib><creatorcontrib>Tanfani, Fabio</creatorcontrib><creatorcontrib>Scire, Andrea</creatorcontrib><creatorcontrib>Carginale, Vincenzo</creatorcontrib><creatorcontrib>Scudiero, Rosaria</creatorcontrib><creatorcontrib>Parisi, Elio</creatorcontrib><creatorcontrib>D'Auria, Sabato</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 1: Biological Sciences &amp; Living Resources</collection><collection>ASFA: Marine Biotechnology Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Marine Biotechnology Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Proteins, structure, function, and bioinformatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Capasso, Clemente</au><au>Abugo, Omoefe</au><au>Tanfani, Fabio</au><au>Scire, Andrea</au><au>Carginale, Vincenzo</au><au>Scudiero, Rosaria</au><au>Parisi, Elio</au><au>D'Auria, Sabato</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stability and conformational dynamics of metallothioneins from the antarctic fish Notothenia coriiceps and mouse</atitle><jtitle>Proteins, structure, function, and bioinformatics</jtitle><addtitle>Proteins</addtitle><date>2002-02-15</date><risdate>2002</risdate><volume>46</volume><issue>3</issue><spage>259</spage><epage>267</epage><pages>259-267</pages><issn>0887-3585</issn><eissn>1097-0134</eissn><abstract>The structural properties and the conformational dynamics of antarctic fish Notothenia coriiceps and mouse metallothioneins were studied by Fourier‐transform infrared and fluorescence spectroscopy. Infrared data revealed that the secondary structure of the two metallothioneins is similar to that of other metallothioneins, most of which lack periodical secondary structure elements such as α‐helices and β‐sheets. However, the infrared spectra of the N. coriiceps metallothionein indicated the presence of a band, which for its typical position in the spectrum and for its sensitivity to temperature was assigned to α‐helices whose content resulted in 5% of the total secondary structure of the protein. The short α‐helix found in N. coriiceps metallothionein showed an onset of denaturation at 30°C and a Tm at 48°C. The data suggest that in N. coriiceps metallothionein a particular cysteine is involved in the α‐helix and in the metal‐thiolate complex. Moreover, infrared spectra revealed that both proteins investigated possess a structure largely accessible to the solvent. The time‐resolved fluorescence data show that N. coriiceps metallothionein possesses a more flexible structure than mouse metallothionein. The spectroscopic data are discussed in terms of the biological function of the metallothioneins. Proteins 2002;46:259–267. © 2002 Wiley‐Liss, Inc.</abstract><cop>New York</cop><pub>John Wiley &amp; Sons, Inc</pub><pmid>11835501</pmid><doi>10.1002/prot.10050</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0887-3585
ispartof Proteins, structure, function, and bioinformatics, 2002-02, Vol.46 (3), p.259-267
issn 0887-3585
1097-0134
language eng
recordid cdi_proquest_miscellaneous_71448790
source MEDLINE; Access via Wiley Online Library
subjects Animals
antarctic fish
Fishes
infrared spectroscopy
metallothionein
Metallothionein - chemistry
Metallothionein - isolation & purification
Mice
Notothenia coriiceps
Protein Conformation
Protein Denaturation
protein structure
Protein Structure, Secondary
rat
Spectrometry, Fluorescence
Spectroscopy, Fourier Transform Infrared
Thermodynamics
title Stability and conformational dynamics of metallothioneins from the antarctic fish Notothenia coriiceps and mouse
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T16%3A10%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stability%20and%20conformational%20dynamics%20of%20metallothioneins%20from%20the%20antarctic%20fish%20Notothenia%20coriiceps%20and%20mouse&rft.jtitle=Proteins,%20structure,%20function,%20and%20bioinformatics&rft.au=Capasso,%20Clemente&rft.date=2002-02-15&rft.volume=46&rft.issue=3&rft.spage=259&rft.epage=267&rft.pages=259-267&rft.issn=0887-3585&rft.eissn=1097-0134&rft_id=info:doi/10.1002/prot.10050&rft_dat=%3Cproquest_cross%3E71448790%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=18377243&rft_id=info:pmid/11835501&rfr_iscdi=true