Whole Brain Segmentation: Automated Labeling of Neuroanatomical Structures in the Human Brain
We present a technique for automatically assigning a neuroanatomical label to each voxel in an MRI volume based on probabilistic information automatically estimated from a manually labeled training set. In contrast to existing segmentation procedures that only label a small number of tissue classes,...
Gespeichert in:
Veröffentlicht in: | Neuron (Cambridge, Mass.) Mass.), 2002-01, Vol.33 (3), p.341-355 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 355 |
---|---|
container_issue | 3 |
container_start_page | 341 |
container_title | Neuron (Cambridge, Mass.) |
container_volume | 33 |
creator | Fischl, Bruce Salat, David H. Busa, Evelina Albert, Marilyn Dieterich, Megan Haselgrove, Christian van der Kouwe, Andre Killiany, Ron Kennedy, David Klaveness, Shuna Montillo, Albert Makris, Nikos Rosen, Bruce Dale, Anders M. |
description | We present a technique for automatically assigning a neuroanatomical label to each voxel in an MRI volume based on probabilistic information automatically estimated from a manually labeled training set. In contrast to existing segmentation procedures that only label a small number of tissue classes, the current method assigns one of 37 labels to each voxel, including left and right caudate, putamen, pallidum, thalamus, lateral ventricles, hippocampus, and amygdala. The classification technique employs a registration procedure that is robust to anatomical variability, including the ventricular enlargement typically associated with neurological diseases and aging. The technique is shown to be comparable in accuracy to manual labeling, and of sufficient sensitivity to robustly detect changes in the volume of noncortical structures that presage the onset of probable Alzheimer's disease. |
doi_str_mv | 10.1016/S0896-6273(02)00569-X |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_71448416</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S089662730200569X</els_id><sourcerecordid>3235321771</sourcerecordid><originalsourceid>FETCH-LOGICAL-c376t-99f281c55fb8c77ce96b9723e20333b794b750a7091ece4a9ca8a607d71360673</originalsourceid><addsrcrecordid>eNqFkcFOFTEUhhuigQvyCJomJEQXoz3tTDt1Q5AImNzo4mpgY5pO51womWmx05rw9s7logs2rs7ifPlP_vMR8hrYe2AgP6xYq2UluRJvGX_HWCN1db1DFsC0qmrQ-gVZ_EP2yP403TEGdaNhl-wBtIJzLhbk59VtHJB-StYHusKbEUO22cfwkZ6WHEebsadL2-Hgww2Na_oVS4o22HnnnR3oKqfickk40Tkh3yK9LKMN28RX5OXaDhMePs0D8uP88_ezy2r57eLL2emyckLJXGm95i24pll3rVPKoZadVlwgZ0KITum6Uw2zimlAh7XVzrZWMtUrEJJJJQ7I8Tb3PsVfBadsRj85HAYbMJbJKKjrtgb5XxBarjWvmxk8egbexZLCXMJAw4RqtILN3TdPVOlG7M198qNND-bvf2fgZAvg3P63x2Qm5zE47H1Cl00fvQFmNkbNo1Gz0WUYN49GzbX4A4oJkHo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1503759717</pqid></control><display><type>article</type><title>Whole Brain Segmentation: Automated Labeling of Neuroanatomical Structures in the Human Brain</title><source>MEDLINE</source><source>Cell Press Free Archives</source><source>Elsevier ScienceDirect Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Fischl, Bruce ; Salat, David H. ; Busa, Evelina ; Albert, Marilyn ; Dieterich, Megan ; Haselgrove, Christian ; van der Kouwe, Andre ; Killiany, Ron ; Kennedy, David ; Klaveness, Shuna ; Montillo, Albert ; Makris, Nikos ; Rosen, Bruce ; Dale, Anders M.</creator><creatorcontrib>Fischl, Bruce ; Salat, David H. ; Busa, Evelina ; Albert, Marilyn ; Dieterich, Megan ; Haselgrove, Christian ; van der Kouwe, Andre ; Killiany, Ron ; Kennedy, David ; Klaveness, Shuna ; Montillo, Albert ; Makris, Nikos ; Rosen, Bruce ; Dale, Anders M.</creatorcontrib><description>We present a technique for automatically assigning a neuroanatomical label to each voxel in an MRI volume based on probabilistic information automatically estimated from a manually labeled training set. In contrast to existing segmentation procedures that only label a small number of tissue classes, the current method assigns one of 37 labels to each voxel, including left and right caudate, putamen, pallidum, thalamus, lateral ventricles, hippocampus, and amygdala. The classification technique employs a registration procedure that is robust to anatomical variability, including the ventricular enlargement typically associated with neurological diseases and aging. The technique is shown to be comparable in accuracy to manual labeling, and of sufficient sensitivity to robustly detect changes in the volume of noncortical structures that presage the onset of probable Alzheimer's disease.</description><identifier>ISSN: 0896-6273</identifier><identifier>EISSN: 1097-4199</identifier><identifier>DOI: 10.1016/S0896-6273(02)00569-X</identifier><identifier>PMID: 11832223</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Aged ; Alzheimer Disease - diagnosis ; Alzheimer Disease - pathology ; Automation ; Brain ; Brain - anatomy & histology ; Brain - pathology ; Brain Mapping ; Classification ; Female ; Humans ; Labeling ; Magnetic Resonance Imaging - methods ; Male ; Probability ; Reproducibility of Results</subject><ispartof>Neuron (Cambridge, Mass.), 2002-01, Vol.33 (3), p.341-355</ispartof><rights>2002 Cell Press</rights><rights>Copyright Elsevier Limited Jan 31, 2002</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c376t-99f281c55fb8c77ce96b9723e20333b794b750a7091ece4a9ca8a607d71360673</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/S0896-6273(02)00569-X$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,777,781,3537,27905,27906,45976</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/11832223$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Fischl, Bruce</creatorcontrib><creatorcontrib>Salat, David H.</creatorcontrib><creatorcontrib>Busa, Evelina</creatorcontrib><creatorcontrib>Albert, Marilyn</creatorcontrib><creatorcontrib>Dieterich, Megan</creatorcontrib><creatorcontrib>Haselgrove, Christian</creatorcontrib><creatorcontrib>van der Kouwe, Andre</creatorcontrib><creatorcontrib>Killiany, Ron</creatorcontrib><creatorcontrib>Kennedy, David</creatorcontrib><creatorcontrib>Klaveness, Shuna</creatorcontrib><creatorcontrib>Montillo, Albert</creatorcontrib><creatorcontrib>Makris, Nikos</creatorcontrib><creatorcontrib>Rosen, Bruce</creatorcontrib><creatorcontrib>Dale, Anders M.</creatorcontrib><title>Whole Brain Segmentation: Automated Labeling of Neuroanatomical Structures in the Human Brain</title><title>Neuron (Cambridge, Mass.)</title><addtitle>Neuron</addtitle><description>We present a technique for automatically assigning a neuroanatomical label to each voxel in an MRI volume based on probabilistic information automatically estimated from a manually labeled training set. In contrast to existing segmentation procedures that only label a small number of tissue classes, the current method assigns one of 37 labels to each voxel, including left and right caudate, putamen, pallidum, thalamus, lateral ventricles, hippocampus, and amygdala. The classification technique employs a registration procedure that is robust to anatomical variability, including the ventricular enlargement typically associated with neurological diseases and aging. The technique is shown to be comparable in accuracy to manual labeling, and of sufficient sensitivity to robustly detect changes in the volume of noncortical structures that presage the onset of probable Alzheimer's disease.</description><subject>Aged</subject><subject>Alzheimer Disease - diagnosis</subject><subject>Alzheimer Disease - pathology</subject><subject>Automation</subject><subject>Brain</subject><subject>Brain - anatomy & histology</subject><subject>Brain - pathology</subject><subject>Brain Mapping</subject><subject>Classification</subject><subject>Female</subject><subject>Humans</subject><subject>Labeling</subject><subject>Magnetic Resonance Imaging - methods</subject><subject>Male</subject><subject>Probability</subject><subject>Reproducibility of Results</subject><issn>0896-6273</issn><issn>1097-4199</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkcFOFTEUhhuigQvyCJomJEQXoz3tTDt1Q5AImNzo4mpgY5pO51womWmx05rw9s7logs2rs7ifPlP_vMR8hrYe2AgP6xYq2UluRJvGX_HWCN1db1DFsC0qmrQ-gVZ_EP2yP403TEGdaNhl-wBtIJzLhbk59VtHJB-StYHusKbEUO22cfwkZ6WHEebsadL2-Hgww2Na_oVS4o22HnnnR3oKqfickk40Tkh3yK9LKMN28RX5OXaDhMePs0D8uP88_ezy2r57eLL2emyckLJXGm95i24pll3rVPKoZadVlwgZ0KITum6Uw2zimlAh7XVzrZWMtUrEJJJJQ7I8Tb3PsVfBadsRj85HAYbMJbJKKjrtgb5XxBarjWvmxk8egbexZLCXMJAw4RqtILN3TdPVOlG7M198qNND-bvf2fgZAvg3P63x2Qm5zE47H1Cl00fvQFmNkbNo1Gz0WUYN49GzbX4A4oJkHo</recordid><startdate>20020131</startdate><enddate>20020131</enddate><creator>Fischl, Bruce</creator><creator>Salat, David H.</creator><creator>Busa, Evelina</creator><creator>Albert, Marilyn</creator><creator>Dieterich, Megan</creator><creator>Haselgrove, Christian</creator><creator>van der Kouwe, Andre</creator><creator>Killiany, Ron</creator><creator>Kennedy, David</creator><creator>Klaveness, Shuna</creator><creator>Montillo, Albert</creator><creator>Makris, Nikos</creator><creator>Rosen, Bruce</creator><creator>Dale, Anders M.</creator><general>Elsevier Inc</general><general>Elsevier Limited</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>NAPCQ</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>20020131</creationdate><title>Whole Brain Segmentation: Automated Labeling of Neuroanatomical Structures in the Human Brain</title><author>Fischl, Bruce ; Salat, David H. ; Busa, Evelina ; Albert, Marilyn ; Dieterich, Megan ; Haselgrove, Christian ; van der Kouwe, Andre ; Killiany, Ron ; Kennedy, David ; Klaveness, Shuna ; Montillo, Albert ; Makris, Nikos ; Rosen, Bruce ; Dale, Anders M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c376t-99f281c55fb8c77ce96b9723e20333b794b750a7091ece4a9ca8a607d71360673</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Aged</topic><topic>Alzheimer Disease - diagnosis</topic><topic>Alzheimer Disease - pathology</topic><topic>Automation</topic><topic>Brain</topic><topic>Brain - anatomy & histology</topic><topic>Brain - pathology</topic><topic>Brain Mapping</topic><topic>Classification</topic><topic>Female</topic><topic>Humans</topic><topic>Labeling</topic><topic>Magnetic Resonance Imaging - methods</topic><topic>Male</topic><topic>Probability</topic><topic>Reproducibility of Results</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fischl, Bruce</creatorcontrib><creatorcontrib>Salat, David H.</creatorcontrib><creatorcontrib>Busa, Evelina</creatorcontrib><creatorcontrib>Albert, Marilyn</creatorcontrib><creatorcontrib>Dieterich, Megan</creatorcontrib><creatorcontrib>Haselgrove, Christian</creatorcontrib><creatorcontrib>van der Kouwe, Andre</creatorcontrib><creatorcontrib>Killiany, Ron</creatorcontrib><creatorcontrib>Kennedy, David</creatorcontrib><creatorcontrib>Klaveness, Shuna</creatorcontrib><creatorcontrib>Montillo, Albert</creatorcontrib><creatorcontrib>Makris, Nikos</creatorcontrib><creatorcontrib>Rosen, Bruce</creatorcontrib><creatorcontrib>Dale, Anders M.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Nursing & Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Neuron (Cambridge, Mass.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fischl, Bruce</au><au>Salat, David H.</au><au>Busa, Evelina</au><au>Albert, Marilyn</au><au>Dieterich, Megan</au><au>Haselgrove, Christian</au><au>van der Kouwe, Andre</au><au>Killiany, Ron</au><au>Kennedy, David</au><au>Klaveness, Shuna</au><au>Montillo, Albert</au><au>Makris, Nikos</au><au>Rosen, Bruce</au><au>Dale, Anders M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Whole Brain Segmentation: Automated Labeling of Neuroanatomical Structures in the Human Brain</atitle><jtitle>Neuron (Cambridge, Mass.)</jtitle><addtitle>Neuron</addtitle><date>2002-01-31</date><risdate>2002</risdate><volume>33</volume><issue>3</issue><spage>341</spage><epage>355</epage><pages>341-355</pages><issn>0896-6273</issn><eissn>1097-4199</eissn><abstract>We present a technique for automatically assigning a neuroanatomical label to each voxel in an MRI volume based on probabilistic information automatically estimated from a manually labeled training set. In contrast to existing segmentation procedures that only label a small number of tissue classes, the current method assigns one of 37 labels to each voxel, including left and right caudate, putamen, pallidum, thalamus, lateral ventricles, hippocampus, and amygdala. The classification technique employs a registration procedure that is robust to anatomical variability, including the ventricular enlargement typically associated with neurological diseases and aging. The technique is shown to be comparable in accuracy to manual labeling, and of sufficient sensitivity to robustly detect changes in the volume of noncortical structures that presage the onset of probable Alzheimer's disease.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>11832223</pmid><doi>10.1016/S0896-6273(02)00569-X</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0896-6273 |
ispartof | Neuron (Cambridge, Mass.), 2002-01, Vol.33 (3), p.341-355 |
issn | 0896-6273 1097-4199 |
language | eng |
recordid | cdi_proquest_miscellaneous_71448416 |
source | MEDLINE; Cell Press Free Archives; Elsevier ScienceDirect Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Aged Alzheimer Disease - diagnosis Alzheimer Disease - pathology Automation Brain Brain - anatomy & histology Brain - pathology Brain Mapping Classification Female Humans Labeling Magnetic Resonance Imaging - methods Male Probability Reproducibility of Results |
title | Whole Brain Segmentation: Automated Labeling of Neuroanatomical Structures in the Human Brain |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T01%3A54%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Whole%20Brain%20Segmentation:%20Automated%20Labeling%20of%20Neuroanatomical%20Structures%20in%20the%20Human%20Brain&rft.jtitle=Neuron%20(Cambridge,%20Mass.)&rft.au=Fischl,%20Bruce&rft.date=2002-01-31&rft.volume=33&rft.issue=3&rft.spage=341&rft.epage=355&rft.pages=341-355&rft.issn=0896-6273&rft.eissn=1097-4199&rft_id=info:doi/10.1016/S0896-6273(02)00569-X&rft_dat=%3Cproquest_pubme%3E3235321771%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1503759717&rft_id=info:pmid/11832223&rft_els_id=S089662730200569X&rfr_iscdi=true |