Whole Brain Segmentation: Automated Labeling of Neuroanatomical Structures in the Human Brain

We present a technique for automatically assigning a neuroanatomical label to each voxel in an MRI volume based on probabilistic information automatically estimated from a manually labeled training set. In contrast to existing segmentation procedures that only label a small number of tissue classes,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neuron (Cambridge, Mass.) Mass.), 2002-01, Vol.33 (3), p.341-355
Hauptverfasser: Fischl, Bruce, Salat, David H., Busa, Evelina, Albert, Marilyn, Dieterich, Megan, Haselgrove, Christian, van der Kouwe, Andre, Killiany, Ron, Kennedy, David, Klaveness, Shuna, Montillo, Albert, Makris, Nikos, Rosen, Bruce, Dale, Anders M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 355
container_issue 3
container_start_page 341
container_title Neuron (Cambridge, Mass.)
container_volume 33
creator Fischl, Bruce
Salat, David H.
Busa, Evelina
Albert, Marilyn
Dieterich, Megan
Haselgrove, Christian
van der Kouwe, Andre
Killiany, Ron
Kennedy, David
Klaveness, Shuna
Montillo, Albert
Makris, Nikos
Rosen, Bruce
Dale, Anders M.
description We present a technique for automatically assigning a neuroanatomical label to each voxel in an MRI volume based on probabilistic information automatically estimated from a manually labeled training set. In contrast to existing segmentation procedures that only label a small number of tissue classes, the current method assigns one of 37 labels to each voxel, including left and right caudate, putamen, pallidum, thalamus, lateral ventricles, hippocampus, and amygdala. The classification technique employs a registration procedure that is robust to anatomical variability, including the ventricular enlargement typically associated with neurological diseases and aging. The technique is shown to be comparable in accuracy to manual labeling, and of sufficient sensitivity to robustly detect changes in the volume of noncortical structures that presage the onset of probable Alzheimer's disease.
doi_str_mv 10.1016/S0896-6273(02)00569-X
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_71448416</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S089662730200569X</els_id><sourcerecordid>3235321771</sourcerecordid><originalsourceid>FETCH-LOGICAL-c376t-99f281c55fb8c77ce96b9723e20333b794b750a7091ece4a9ca8a607d71360673</originalsourceid><addsrcrecordid>eNqFkcFOFTEUhhuigQvyCJomJEQXoz3tTDt1Q5AImNzo4mpgY5pO51womWmx05rw9s7logs2rs7ifPlP_vMR8hrYe2AgP6xYq2UluRJvGX_HWCN1db1DFsC0qmrQ-gVZ_EP2yP403TEGdaNhl-wBtIJzLhbk59VtHJB-StYHusKbEUO22cfwkZ6WHEebsadL2-Hgww2Na_oVS4o22HnnnR3oKqfickk40Tkh3yK9LKMN28RX5OXaDhMePs0D8uP88_ezy2r57eLL2emyckLJXGm95i24pll3rVPKoZadVlwgZ0KITum6Uw2zimlAh7XVzrZWMtUrEJJJJQ7I8Tb3PsVfBadsRj85HAYbMJbJKKjrtgb5XxBarjWvmxk8egbexZLCXMJAw4RqtILN3TdPVOlG7M198qNND-bvf2fgZAvg3P63x2Qm5zE47H1Cl00fvQFmNkbNo1Gz0WUYN49GzbX4A4oJkHo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1503759717</pqid></control><display><type>article</type><title>Whole Brain Segmentation: Automated Labeling of Neuroanatomical Structures in the Human Brain</title><source>MEDLINE</source><source>Cell Press Free Archives</source><source>Elsevier ScienceDirect Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Fischl, Bruce ; Salat, David H. ; Busa, Evelina ; Albert, Marilyn ; Dieterich, Megan ; Haselgrove, Christian ; van der Kouwe, Andre ; Killiany, Ron ; Kennedy, David ; Klaveness, Shuna ; Montillo, Albert ; Makris, Nikos ; Rosen, Bruce ; Dale, Anders M.</creator><creatorcontrib>Fischl, Bruce ; Salat, David H. ; Busa, Evelina ; Albert, Marilyn ; Dieterich, Megan ; Haselgrove, Christian ; van der Kouwe, Andre ; Killiany, Ron ; Kennedy, David ; Klaveness, Shuna ; Montillo, Albert ; Makris, Nikos ; Rosen, Bruce ; Dale, Anders M.</creatorcontrib><description>We present a technique for automatically assigning a neuroanatomical label to each voxel in an MRI volume based on probabilistic information automatically estimated from a manually labeled training set. In contrast to existing segmentation procedures that only label a small number of tissue classes, the current method assigns one of 37 labels to each voxel, including left and right caudate, putamen, pallidum, thalamus, lateral ventricles, hippocampus, and amygdala. The classification technique employs a registration procedure that is robust to anatomical variability, including the ventricular enlargement typically associated with neurological diseases and aging. The technique is shown to be comparable in accuracy to manual labeling, and of sufficient sensitivity to robustly detect changes in the volume of noncortical structures that presage the onset of probable Alzheimer's disease.</description><identifier>ISSN: 0896-6273</identifier><identifier>EISSN: 1097-4199</identifier><identifier>DOI: 10.1016/S0896-6273(02)00569-X</identifier><identifier>PMID: 11832223</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Aged ; Alzheimer Disease - diagnosis ; Alzheimer Disease - pathology ; Automation ; Brain ; Brain - anatomy &amp; histology ; Brain - pathology ; Brain Mapping ; Classification ; Female ; Humans ; Labeling ; Magnetic Resonance Imaging - methods ; Male ; Probability ; Reproducibility of Results</subject><ispartof>Neuron (Cambridge, Mass.), 2002-01, Vol.33 (3), p.341-355</ispartof><rights>2002 Cell Press</rights><rights>Copyright Elsevier Limited Jan 31, 2002</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c376t-99f281c55fb8c77ce96b9723e20333b794b750a7091ece4a9ca8a607d71360673</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/S0896-6273(02)00569-X$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,777,781,3537,27905,27906,45976</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/11832223$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Fischl, Bruce</creatorcontrib><creatorcontrib>Salat, David H.</creatorcontrib><creatorcontrib>Busa, Evelina</creatorcontrib><creatorcontrib>Albert, Marilyn</creatorcontrib><creatorcontrib>Dieterich, Megan</creatorcontrib><creatorcontrib>Haselgrove, Christian</creatorcontrib><creatorcontrib>van der Kouwe, Andre</creatorcontrib><creatorcontrib>Killiany, Ron</creatorcontrib><creatorcontrib>Kennedy, David</creatorcontrib><creatorcontrib>Klaveness, Shuna</creatorcontrib><creatorcontrib>Montillo, Albert</creatorcontrib><creatorcontrib>Makris, Nikos</creatorcontrib><creatorcontrib>Rosen, Bruce</creatorcontrib><creatorcontrib>Dale, Anders M.</creatorcontrib><title>Whole Brain Segmentation: Automated Labeling of Neuroanatomical Structures in the Human Brain</title><title>Neuron (Cambridge, Mass.)</title><addtitle>Neuron</addtitle><description>We present a technique for automatically assigning a neuroanatomical label to each voxel in an MRI volume based on probabilistic information automatically estimated from a manually labeled training set. In contrast to existing segmentation procedures that only label a small number of tissue classes, the current method assigns one of 37 labels to each voxel, including left and right caudate, putamen, pallidum, thalamus, lateral ventricles, hippocampus, and amygdala. The classification technique employs a registration procedure that is robust to anatomical variability, including the ventricular enlargement typically associated with neurological diseases and aging. The technique is shown to be comparable in accuracy to manual labeling, and of sufficient sensitivity to robustly detect changes in the volume of noncortical structures that presage the onset of probable Alzheimer's disease.</description><subject>Aged</subject><subject>Alzheimer Disease - diagnosis</subject><subject>Alzheimer Disease - pathology</subject><subject>Automation</subject><subject>Brain</subject><subject>Brain - anatomy &amp; histology</subject><subject>Brain - pathology</subject><subject>Brain Mapping</subject><subject>Classification</subject><subject>Female</subject><subject>Humans</subject><subject>Labeling</subject><subject>Magnetic Resonance Imaging - methods</subject><subject>Male</subject><subject>Probability</subject><subject>Reproducibility of Results</subject><issn>0896-6273</issn><issn>1097-4199</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkcFOFTEUhhuigQvyCJomJEQXoz3tTDt1Q5AImNzo4mpgY5pO51womWmx05rw9s7logs2rs7ifPlP_vMR8hrYe2AgP6xYq2UluRJvGX_HWCN1db1DFsC0qmrQ-gVZ_EP2yP403TEGdaNhl-wBtIJzLhbk59VtHJB-StYHusKbEUO22cfwkZ6WHEebsadL2-Hgww2Na_oVS4o22HnnnR3oKqfickk40Tkh3yK9LKMN28RX5OXaDhMePs0D8uP88_ezy2r57eLL2emyckLJXGm95i24pll3rVPKoZadVlwgZ0KITum6Uw2zimlAh7XVzrZWMtUrEJJJJQ7I8Tb3PsVfBadsRj85HAYbMJbJKKjrtgb5XxBarjWvmxk8egbexZLCXMJAw4RqtILN3TdPVOlG7M198qNND-bvf2fgZAvg3P63x2Qm5zE47H1Cl00fvQFmNkbNo1Gz0WUYN49GzbX4A4oJkHo</recordid><startdate>20020131</startdate><enddate>20020131</enddate><creator>Fischl, Bruce</creator><creator>Salat, David H.</creator><creator>Busa, Evelina</creator><creator>Albert, Marilyn</creator><creator>Dieterich, Megan</creator><creator>Haselgrove, Christian</creator><creator>van der Kouwe, Andre</creator><creator>Killiany, Ron</creator><creator>Kennedy, David</creator><creator>Klaveness, Shuna</creator><creator>Montillo, Albert</creator><creator>Makris, Nikos</creator><creator>Rosen, Bruce</creator><creator>Dale, Anders M.</creator><general>Elsevier Inc</general><general>Elsevier Limited</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>NAPCQ</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>20020131</creationdate><title>Whole Brain Segmentation: Automated Labeling of Neuroanatomical Structures in the Human Brain</title><author>Fischl, Bruce ; Salat, David H. ; Busa, Evelina ; Albert, Marilyn ; Dieterich, Megan ; Haselgrove, Christian ; van der Kouwe, Andre ; Killiany, Ron ; Kennedy, David ; Klaveness, Shuna ; Montillo, Albert ; Makris, Nikos ; Rosen, Bruce ; Dale, Anders M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c376t-99f281c55fb8c77ce96b9723e20333b794b750a7091ece4a9ca8a607d71360673</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Aged</topic><topic>Alzheimer Disease - diagnosis</topic><topic>Alzheimer Disease - pathology</topic><topic>Automation</topic><topic>Brain</topic><topic>Brain - anatomy &amp; histology</topic><topic>Brain - pathology</topic><topic>Brain Mapping</topic><topic>Classification</topic><topic>Female</topic><topic>Humans</topic><topic>Labeling</topic><topic>Magnetic Resonance Imaging - methods</topic><topic>Male</topic><topic>Probability</topic><topic>Reproducibility of Results</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fischl, Bruce</creatorcontrib><creatorcontrib>Salat, David H.</creatorcontrib><creatorcontrib>Busa, Evelina</creatorcontrib><creatorcontrib>Albert, Marilyn</creatorcontrib><creatorcontrib>Dieterich, Megan</creatorcontrib><creatorcontrib>Haselgrove, Christian</creatorcontrib><creatorcontrib>van der Kouwe, Andre</creatorcontrib><creatorcontrib>Killiany, Ron</creatorcontrib><creatorcontrib>Kennedy, David</creatorcontrib><creatorcontrib>Klaveness, Shuna</creatorcontrib><creatorcontrib>Montillo, Albert</creatorcontrib><creatorcontrib>Makris, Nikos</creatorcontrib><creatorcontrib>Rosen, Bruce</creatorcontrib><creatorcontrib>Dale, Anders M.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Neuron (Cambridge, Mass.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fischl, Bruce</au><au>Salat, David H.</au><au>Busa, Evelina</au><au>Albert, Marilyn</au><au>Dieterich, Megan</au><au>Haselgrove, Christian</au><au>van der Kouwe, Andre</au><au>Killiany, Ron</au><au>Kennedy, David</au><au>Klaveness, Shuna</au><au>Montillo, Albert</au><au>Makris, Nikos</au><au>Rosen, Bruce</au><au>Dale, Anders M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Whole Brain Segmentation: Automated Labeling of Neuroanatomical Structures in the Human Brain</atitle><jtitle>Neuron (Cambridge, Mass.)</jtitle><addtitle>Neuron</addtitle><date>2002-01-31</date><risdate>2002</risdate><volume>33</volume><issue>3</issue><spage>341</spage><epage>355</epage><pages>341-355</pages><issn>0896-6273</issn><eissn>1097-4199</eissn><abstract>We present a technique for automatically assigning a neuroanatomical label to each voxel in an MRI volume based on probabilistic information automatically estimated from a manually labeled training set. In contrast to existing segmentation procedures that only label a small number of tissue classes, the current method assigns one of 37 labels to each voxel, including left and right caudate, putamen, pallidum, thalamus, lateral ventricles, hippocampus, and amygdala. The classification technique employs a registration procedure that is robust to anatomical variability, including the ventricular enlargement typically associated with neurological diseases and aging. The technique is shown to be comparable in accuracy to manual labeling, and of sufficient sensitivity to robustly detect changes in the volume of noncortical structures that presage the onset of probable Alzheimer's disease.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>11832223</pmid><doi>10.1016/S0896-6273(02)00569-X</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0896-6273
ispartof Neuron (Cambridge, Mass.), 2002-01, Vol.33 (3), p.341-355
issn 0896-6273
1097-4199
language eng
recordid cdi_proquest_miscellaneous_71448416
source MEDLINE; Cell Press Free Archives; Elsevier ScienceDirect Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Aged
Alzheimer Disease - diagnosis
Alzheimer Disease - pathology
Automation
Brain
Brain - anatomy & histology
Brain - pathology
Brain Mapping
Classification
Female
Humans
Labeling
Magnetic Resonance Imaging - methods
Male
Probability
Reproducibility of Results
title Whole Brain Segmentation: Automated Labeling of Neuroanatomical Structures in the Human Brain
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T01%3A54%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Whole%20Brain%20Segmentation:%20Automated%20Labeling%20of%20Neuroanatomical%20Structures%20in%20the%20Human%20Brain&rft.jtitle=Neuron%20(Cambridge,%20Mass.)&rft.au=Fischl,%20Bruce&rft.date=2002-01-31&rft.volume=33&rft.issue=3&rft.spage=341&rft.epage=355&rft.pages=341-355&rft.issn=0896-6273&rft.eissn=1097-4199&rft_id=info:doi/10.1016/S0896-6273(02)00569-X&rft_dat=%3Cproquest_pubme%3E3235321771%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1503759717&rft_id=info:pmid/11832223&rft_els_id=S089662730200569X&rfr_iscdi=true