Arabidopsis Seedling Growth, Storage Lipid Mobilization, and Photosynthetic Gene Expression Are Regulated by Carbon: Nitrogen Availability
The objective of the current work was to establish the degree to which the effects of carbon and nitrogen availability on Arabidopsis seedling growth and development are due to these nutrients acting independently or together. Growth of seedlings on low (0.1 mM) nitrogen results in a significant red...
Gespeichert in:
Veröffentlicht in: | Plant physiology (Bethesda) 2002-02, Vol.128 (2), p.472-481 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 481 |
---|---|
container_issue | 2 |
container_start_page | 472 |
container_title | Plant physiology (Bethesda) |
container_volume | 128 |
creator | Martin, Thomas Oswald, Oliver Graham, Ian A. |
description | The objective of the current work was to establish the degree to which the effects of carbon and nitrogen availability on Arabidopsis seedling growth and development are due to these nutrients acting independently or together. Growth of seedlings on low (0.1 mM) nitrogen results in a significant reduction of seedling and cotyledon size, fresh weight, chlorophyll, and anthocyanin content but a slight increase in endogenous sugars. The addition of 100 mM sucrose (Suc) to the nitrogen-depleted growth media results in a further reduction in cotyledon size and chlorophyll content and an overall increase in anthocyanins and endogenous sugars. Storage lipid breakdown is almost completely blocked in seedlings grown on low nitrogen and 100 mM Suc and is significantly inhibited when seedlings are grown on either low nitrogen or high Suc. Carbohydrate repression of photosynthetic gene expression can only be observed under low nitrogen conditions. Low (0.1 mM) nitrogen in the absence of exogenous carbohydrate results in a significant decrease in chlorophyll a/b-binding protein and ribulose bisphosphate carboxylase small subunit gene transcript levels. Thus, carbon to nitrogen ratio rather than carbohydrate status alone appears to play the predominant role in regulating various aspects of seedling growth including storage reserve mobilization and photosynthetic gene expression. |
doi_str_mv | 10.1104/pp.010475 |
format | Article |
fullrecord | <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_71447523</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>4280315</jstor_id><sourcerecordid>4280315</sourcerecordid><originalsourceid>FETCH-LOGICAL-c620t-74c16978f92637c9c3134c78b5ac637788e0467fd9d9f174bb707ea7aa3a62483</originalsourceid><addsrcrecordid>eNpd0l2LEzEUBuAgiltXL7wXCYKCsF2TSWaSEbwoZa1C_cDV63Amk5mmTJMxyazWn-CvNkvLrnqVkPOccMIbhB5Tck4p4a_G8ZzkVZR30IyWrJgXJZd30YyQvCdS1ifoQYxbQghllN9HJ5RKXtCSztDvRYDGtn6MNuJLY9rBuh6vgv-RNmf4MvkAvcFrO9oWf_CNHewvSNa7MwyuxZ83Pvm4d2ljktV4ZZzBFz_HYGLMBi-CwV9MPw2QTIubPV5CaLx7jT_aFHxvsrgCO8D1tWn_EN3rYIjm0XE9Rd_eXnxdvpuvP63eLxfrua4KkuaCa1rVQnZ1UTGha80o41rIpgSdD4SUhvBKdG3d1h0VvGkEEQYEAIOq4JKdojeHe8ep2ZlWG5cCDGoMdgdhrzxY9W_F2Y3q_ZWiXNaU5P4Xx_7gv08mJrWzUZthAGf8FJWgPEdRsAyf_Qe3fgouv00VVFYVKcsyo5cHpIOPMZjuZhBK1HW6ahzVId1sn_49-a08xpnB8yOAqGHoAjht461jXIiSV9k9ObhtzAnf1HkhCcsf6A_WObfJ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>218660555</pqid></control><display><type>article</type><title>Arabidopsis Seedling Growth, Storage Lipid Mobilization, and Photosynthetic Gene Expression Are Regulated by Carbon: Nitrogen Availability</title><source>MEDLINE</source><source>JSTOR</source><source>EZB Electronic Journals Library</source><source>Oxford Journals</source><creator>Martin, Thomas ; Oswald, Oliver ; Graham, Ian A.</creator><creatorcontrib>Martin, Thomas ; Oswald, Oliver ; Graham, Ian A.</creatorcontrib><description>The objective of the current work was to establish the degree to which the effects of carbon and nitrogen availability on Arabidopsis seedling growth and development are due to these nutrients acting independently or together. Growth of seedlings on low (0.1 mM) nitrogen results in a significant reduction of seedling and cotyledon size, fresh weight, chlorophyll, and anthocyanin content but a slight increase in endogenous sugars. The addition of 100 mM sucrose (Suc) to the nitrogen-depleted growth media results in a further reduction in cotyledon size and chlorophyll content and an overall increase in anthocyanins and endogenous sugars. Storage lipid breakdown is almost completely blocked in seedlings grown on low nitrogen and 100 mM Suc and is significantly inhibited when seedlings are grown on either low nitrogen or high Suc. Carbohydrate repression of photosynthetic gene expression can only be observed under low nitrogen conditions. Low (0.1 mM) nitrogen in the absence of exogenous carbohydrate results in a significant decrease in chlorophyll a/b-binding protein and ribulose bisphosphate carboxylase small subunit gene transcript levels. Thus, carbon to nitrogen ratio rather than carbohydrate status alone appears to play the predominant role in regulating various aspects of seedling growth including storage reserve mobilization and photosynthetic gene expression.</description><identifier>ISSN: 0032-0889</identifier><identifier>EISSN: 1532-2548</identifier><identifier>DOI: 10.1104/pp.010475</identifier><identifier>PMID: 11842151</identifier><identifier>CODEN: PPHYA5</identifier><language>eng</language><publisher>Rockville, MD: American Society of Plant Biologists</publisher><subject>Anthocyanins - metabolism ; Arabidopsis - drug effects ; Arabidopsis - genetics ; Arabidopsis - growth & development ; Arabidopsis Proteins ; Biological and medical sciences ; Carbon ; Carrier Proteins - metabolism ; Chlorophyll ; Chlorophyll - metabolism ; Chlorophylls ; Cotyledons ; Eicosanoic Acids - metabolism ; Environmental Stress and Adaptation ; Fundamental and applied biological sciences. Psychology ; Gene expression ; Gene expression regulation ; Gene Expression Regulation, Plant - drug effects ; Glucose - pharmacology ; Growth media ; Light-Harvesting Protein Complexes ; Lipid Metabolism ; Lipids ; Nitrogen ; Nitrogen - pharmacology ; Phenotype ; Photosynthesis - genetics ; Plant Development ; Plant growth. Development of the storage organs ; Plant physiology and development ; Plant Roots - drug effects ; Plant Roots - growth & development ; Plant Shoots - drug effects ; Plant Shoots - growth & development ; Plants ; Plants - drug effects ; Plants - genetics ; Ribulose-Bisphosphate Carboxylase - metabolism ; Seedling growth ; Seedlings ; Signal Transduction ; Sucrose - pharmacology ; Sugar ; Sugars ; Triglycerides - metabolism ; Vegetative apparatus, growth and morphogenesis. Senescence</subject><ispartof>Plant physiology (Bethesda), 2002-02, Vol.128 (2), p.472-481</ispartof><rights>Copyright 2002 American Society of Plant Biologists</rights><rights>2002 INIST-CNRS</rights><rights>Copyright American Society of Plant Physiologists Feb 2002</rights><rights>Copyright © 2002, American Society of Plant Physiologists 2002</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c620t-74c16978f92637c9c3134c78b5ac637788e0467fd9d9f174bb707ea7aa3a62483</citedby><cites>FETCH-LOGICAL-c620t-74c16978f92637c9c3134c78b5ac637788e0467fd9d9f174bb707ea7aa3a62483</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/4280315$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/4280315$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,776,780,799,881,27903,27904,57996,58229</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=13477546$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/11842151$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Martin, Thomas</creatorcontrib><creatorcontrib>Oswald, Oliver</creatorcontrib><creatorcontrib>Graham, Ian A.</creatorcontrib><title>Arabidopsis Seedling Growth, Storage Lipid Mobilization, and Photosynthetic Gene Expression Are Regulated by Carbon: Nitrogen Availability</title><title>Plant physiology (Bethesda)</title><addtitle>Plant Physiol</addtitle><description>The objective of the current work was to establish the degree to which the effects of carbon and nitrogen availability on Arabidopsis seedling growth and development are due to these nutrients acting independently or together. Growth of seedlings on low (0.1 mM) nitrogen results in a significant reduction of seedling and cotyledon size, fresh weight, chlorophyll, and anthocyanin content but a slight increase in endogenous sugars. The addition of 100 mM sucrose (Suc) to the nitrogen-depleted growth media results in a further reduction in cotyledon size and chlorophyll content and an overall increase in anthocyanins and endogenous sugars. Storage lipid breakdown is almost completely blocked in seedlings grown on low nitrogen and 100 mM Suc and is significantly inhibited when seedlings are grown on either low nitrogen or high Suc. Carbohydrate repression of photosynthetic gene expression can only be observed under low nitrogen conditions. Low (0.1 mM) nitrogen in the absence of exogenous carbohydrate results in a significant decrease in chlorophyll a/b-binding protein and ribulose bisphosphate carboxylase small subunit gene transcript levels. Thus, carbon to nitrogen ratio rather than carbohydrate status alone appears to play the predominant role in regulating various aspects of seedling growth including storage reserve mobilization and photosynthetic gene expression.</description><subject>Anthocyanins - metabolism</subject><subject>Arabidopsis - drug effects</subject><subject>Arabidopsis - genetics</subject><subject>Arabidopsis - growth & development</subject><subject>Arabidopsis Proteins</subject><subject>Biological and medical sciences</subject><subject>Carbon</subject><subject>Carrier Proteins - metabolism</subject><subject>Chlorophyll</subject><subject>Chlorophyll - metabolism</subject><subject>Chlorophylls</subject><subject>Cotyledons</subject><subject>Eicosanoic Acids - metabolism</subject><subject>Environmental Stress and Adaptation</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Gene expression</subject><subject>Gene expression regulation</subject><subject>Gene Expression Regulation, Plant - drug effects</subject><subject>Glucose - pharmacology</subject><subject>Growth media</subject><subject>Light-Harvesting Protein Complexes</subject><subject>Lipid Metabolism</subject><subject>Lipids</subject><subject>Nitrogen</subject><subject>Nitrogen - pharmacology</subject><subject>Phenotype</subject><subject>Photosynthesis - genetics</subject><subject>Plant Development</subject><subject>Plant growth. Development of the storage organs</subject><subject>Plant physiology and development</subject><subject>Plant Roots - drug effects</subject><subject>Plant Roots - growth & development</subject><subject>Plant Shoots - drug effects</subject><subject>Plant Shoots - growth & development</subject><subject>Plants</subject><subject>Plants - drug effects</subject><subject>Plants - genetics</subject><subject>Ribulose-Bisphosphate Carboxylase - metabolism</subject><subject>Seedling growth</subject><subject>Seedlings</subject><subject>Signal Transduction</subject><subject>Sucrose - pharmacology</subject><subject>Sugar</subject><subject>Sugars</subject><subject>Triglycerides - metabolism</subject><subject>Vegetative apparatus, growth and morphogenesis. Senescence</subject><issn>0032-0889</issn><issn>1532-2548</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNpd0l2LEzEUBuAgiltXL7wXCYKCsF2TSWaSEbwoZa1C_cDV63Amk5mmTJMxyazWn-CvNkvLrnqVkPOccMIbhB5Tck4p4a_G8ZzkVZR30IyWrJgXJZd30YyQvCdS1ifoQYxbQghllN9HJ5RKXtCSztDvRYDGtn6MNuJLY9rBuh6vgv-RNmf4MvkAvcFrO9oWf_CNHewvSNa7MwyuxZ83Pvm4d2ljktV4ZZzBFz_HYGLMBi-CwV9MPw2QTIubPV5CaLx7jT_aFHxvsrgCO8D1tWn_EN3rYIjm0XE9Rd_eXnxdvpuvP63eLxfrua4KkuaCa1rVQnZ1UTGha80o41rIpgSdD4SUhvBKdG3d1h0VvGkEEQYEAIOq4JKdojeHe8ep2ZlWG5cCDGoMdgdhrzxY9W_F2Y3q_ZWiXNaU5P4Xx_7gv08mJrWzUZthAGf8FJWgPEdRsAyf_Qe3fgouv00VVFYVKcsyo5cHpIOPMZjuZhBK1HW6ahzVId1sn_49-a08xpnB8yOAqGHoAjht461jXIiSV9k9ObhtzAnf1HkhCcsf6A_WObfJ</recordid><startdate>20020201</startdate><enddate>20020201</enddate><creator>Martin, Thomas</creator><creator>Oswald, Oliver</creator><creator>Graham, Ian A.</creator><general>American Society of Plant Biologists</general><general>American Society of Plant Physiologists</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>4T-</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M2P</scope><scope>M7P</scope><scope>MBDVC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>S0X</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20020201</creationdate><title>Arabidopsis Seedling Growth, Storage Lipid Mobilization, and Photosynthetic Gene Expression Are Regulated by Carbon: Nitrogen Availability</title><author>Martin, Thomas ; Oswald, Oliver ; Graham, Ian A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c620t-74c16978f92637c9c3134c78b5ac637788e0467fd9d9f174bb707ea7aa3a62483</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Anthocyanins - metabolism</topic><topic>Arabidopsis - drug effects</topic><topic>Arabidopsis - genetics</topic><topic>Arabidopsis - growth & development</topic><topic>Arabidopsis Proteins</topic><topic>Biological and medical sciences</topic><topic>Carbon</topic><topic>Carrier Proteins - metabolism</topic><topic>Chlorophyll</topic><topic>Chlorophyll - metabolism</topic><topic>Chlorophylls</topic><topic>Cotyledons</topic><topic>Eicosanoic Acids - metabolism</topic><topic>Environmental Stress and Adaptation</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Gene expression</topic><topic>Gene expression regulation</topic><topic>Gene Expression Regulation, Plant - drug effects</topic><topic>Glucose - pharmacology</topic><topic>Growth media</topic><topic>Light-Harvesting Protein Complexes</topic><topic>Lipid Metabolism</topic><topic>Lipids</topic><topic>Nitrogen</topic><topic>Nitrogen - pharmacology</topic><topic>Phenotype</topic><topic>Photosynthesis - genetics</topic><topic>Plant Development</topic><topic>Plant growth. Development of the storage organs</topic><topic>Plant physiology and development</topic><topic>Plant Roots - drug effects</topic><topic>Plant Roots - growth & development</topic><topic>Plant Shoots - drug effects</topic><topic>Plant Shoots - growth & development</topic><topic>Plants</topic><topic>Plants - drug effects</topic><topic>Plants - genetics</topic><topic>Ribulose-Bisphosphate Carboxylase - metabolism</topic><topic>Seedling growth</topic><topic>Seedlings</topic><topic>Signal Transduction</topic><topic>Sucrose - pharmacology</topic><topic>Sugar</topic><topic>Sugars</topic><topic>Triglycerides - metabolism</topic><topic>Vegetative apparatus, growth and morphogenesis. Senescence</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Martin, Thomas</creatorcontrib><creatorcontrib>Oswald, Oliver</creatorcontrib><creatorcontrib>Graham, Ian A.</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Docstoc</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Health and Medical</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Research Library</collection><collection>ProQuest Science Journals</collection><collection>ProQuest Biological Science Journals</collection><collection>Research Library (Corporate)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Plant physiology (Bethesda)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Martin, Thomas</au><au>Oswald, Oliver</au><au>Graham, Ian A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Arabidopsis Seedling Growth, Storage Lipid Mobilization, and Photosynthetic Gene Expression Are Regulated by Carbon: Nitrogen Availability</atitle><jtitle>Plant physiology (Bethesda)</jtitle><addtitle>Plant Physiol</addtitle><date>2002-02-01</date><risdate>2002</risdate><volume>128</volume><issue>2</issue><spage>472</spage><epage>481</epage><pages>472-481</pages><issn>0032-0889</issn><eissn>1532-2548</eissn><coden>PPHYA5</coden><abstract>The objective of the current work was to establish the degree to which the effects of carbon and nitrogen availability on Arabidopsis seedling growth and development are due to these nutrients acting independently or together. Growth of seedlings on low (0.1 mM) nitrogen results in a significant reduction of seedling and cotyledon size, fresh weight, chlorophyll, and anthocyanin content but a slight increase in endogenous sugars. The addition of 100 mM sucrose (Suc) to the nitrogen-depleted growth media results in a further reduction in cotyledon size and chlorophyll content and an overall increase in anthocyanins and endogenous sugars. Storage lipid breakdown is almost completely blocked in seedlings grown on low nitrogen and 100 mM Suc and is significantly inhibited when seedlings are grown on either low nitrogen or high Suc. Carbohydrate repression of photosynthetic gene expression can only be observed under low nitrogen conditions. Low (0.1 mM) nitrogen in the absence of exogenous carbohydrate results in a significant decrease in chlorophyll a/b-binding protein and ribulose bisphosphate carboxylase small subunit gene transcript levels. Thus, carbon to nitrogen ratio rather than carbohydrate status alone appears to play the predominant role in regulating various aspects of seedling growth including storage reserve mobilization and photosynthetic gene expression.</abstract><cop>Rockville, MD</cop><pub>American Society of Plant Biologists</pub><pmid>11842151</pmid><doi>10.1104/pp.010475</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0032-0889 |
ispartof | Plant physiology (Bethesda), 2002-02, Vol.128 (2), p.472-481 |
issn | 0032-0889 1532-2548 |
language | eng |
recordid | cdi_proquest_miscellaneous_71447523 |
source | MEDLINE; JSTOR; EZB Electronic Journals Library; Oxford Journals |
subjects | Anthocyanins - metabolism Arabidopsis - drug effects Arabidopsis - genetics Arabidopsis - growth & development Arabidopsis Proteins Biological and medical sciences Carbon Carrier Proteins - metabolism Chlorophyll Chlorophyll - metabolism Chlorophylls Cotyledons Eicosanoic Acids - metabolism Environmental Stress and Adaptation Fundamental and applied biological sciences. Psychology Gene expression Gene expression regulation Gene Expression Regulation, Plant - drug effects Glucose - pharmacology Growth media Light-Harvesting Protein Complexes Lipid Metabolism Lipids Nitrogen Nitrogen - pharmacology Phenotype Photosynthesis - genetics Plant Development Plant growth. Development of the storage organs Plant physiology and development Plant Roots - drug effects Plant Roots - growth & development Plant Shoots - drug effects Plant Shoots - growth & development Plants Plants - drug effects Plants - genetics Ribulose-Bisphosphate Carboxylase - metabolism Seedling growth Seedlings Signal Transduction Sucrose - pharmacology Sugar Sugars Triglycerides - metabolism Vegetative apparatus, growth and morphogenesis. Senescence |
title | Arabidopsis Seedling Growth, Storage Lipid Mobilization, and Photosynthetic Gene Expression Are Regulated by Carbon: Nitrogen Availability |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T20%3A01%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Arabidopsis%20Seedling%20Growth,%20Storage%20Lipid%20Mobilization,%20and%20Photosynthetic%20Gene%20Expression%20Are%20Regulated%20by%20Carbon:%20Nitrogen%20Availability&rft.jtitle=Plant%20physiology%20(Bethesda)&rft.au=Martin,%20Thomas&rft.date=2002-02-01&rft.volume=128&rft.issue=2&rft.spage=472&rft.epage=481&rft.pages=472-481&rft.issn=0032-0889&rft.eissn=1532-2548&rft.coden=PPHYA5&rft_id=info:doi/10.1104/pp.010475&rft_dat=%3Cjstor_pubme%3E4280315%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=218660555&rft_id=info:pmid/11842151&rft_jstor_id=4280315&rfr_iscdi=true |