Mitochondrial Genome Content Is Regulated during Nematode Development
Growth and development rely on the mitochondrial respiratory chain (MRC) as the major source of ATP. We measured the mitochondrial DNA (mtDNA) copy number of each of the Caenorhabditis elegans developmental stages. Embryos, L1, L2, and L3 larvae all have ∼25,000 copies of maternally derived mtDNA. T...
Gespeichert in:
Veröffentlicht in: | Biochemical and biophysical research communications 2002-02, Vol.291 (1), p.8-16 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 16 |
---|---|
container_issue | 1 |
container_start_page | 8 |
container_title | Biochemical and biophysical research communications |
container_volume | 291 |
creator | Tsang, William Y. Lemire, Bernard D. |
description | Growth and development rely on the mitochondrial respiratory chain (MRC) as the major source of ATP. We measured the mitochondrial DNA (mtDNA) copy number of each of the Caenorhabditis elegans developmental stages. Embryos, L1, L2, and L3 larvae all have ∼25,000 copies of maternally derived mtDNA. The copy number increases fivefold in L4 larvae and a further sixfold in adult hermaphrodites, but only twofold in adult males. The majority of mtDNA in adult worms is germline associated, and germline-deficient mutants show markedly reduced mtDNA contents. With sperm-deficient or oocyte-deficient mutants, we confirm that mtDNA amplification is primarily associated with oocyte production. When mtDNA replication is inhibited, a quantitative and homogeneous arrest as L3 larvae occurs. Thus, mtDNA amplification is a necessary component of normal development and its regulation may involve an energy-sensing decision or checkpoint that can be invoked when mitochondrial energy generation is impaired. |
doi_str_mv | 10.1006/bbrc.2002.6394 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_71447149</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0006291X02963941</els_id><sourcerecordid>18264741</sourcerecordid><originalsourceid>FETCH-LOGICAL-c371t-5c37a2a9b0690c721fc1a7bc924bff28cd8c2da3c471e707177be7705ffa84fa3</originalsourceid><addsrcrecordid>eNqFkEtLAzEUhYMotj62LmVW7qbmpulkspRaH1AVRMFdyCR3NDIzqclMwX9vSguuxNXZfOfA-Qg5AzoBSovLqgpmwihlk2Iq-R4ZA5U0Z0D5PhnTRORMwtuIHMX4SSkAL-QhGQGUTPIZH5PFg-u9-fCdDU432S12vsVs7rseuz67j9kzvg-N7tFmdgiue88esdW9t5hd4xobv2oTeEIOat1EPN3lMXm9WbzM7_Ll0-39_GqZm6mAPp-l0EzLihaSGsGgNqBFZSTjVV2z0tjSMKunhgtAQQUIUaEQdFbXuuS1nh6Ti-3uKvivAWOvWhcNNo3u0A9RCeCpyuW_YPpfcMEhgZMtaIKPMWCtVsG1OnwroGpjWG0Mq41htTGcCue75aFq0f7iO6UJKLcAJhFrh0FF47AzaF1A0yvr3V_bP0Ciik0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>18264741</pqid></control><display><type>article</type><title>Mitochondrial Genome Content Is Regulated during Nematode Development</title><source>MEDLINE</source><source>Access via ScienceDirect (Elsevier)</source><creator>Tsang, William Y. ; Lemire, Bernard D.</creator><creatorcontrib>Tsang, William Y. ; Lemire, Bernard D.</creatorcontrib><description>Growth and development rely on the mitochondrial respiratory chain (MRC) as the major source of ATP. We measured the mitochondrial DNA (mtDNA) copy number of each of the Caenorhabditis elegans developmental stages. Embryos, L1, L2, and L3 larvae all have ∼25,000 copies of maternally derived mtDNA. The copy number increases fivefold in L4 larvae and a further sixfold in adult hermaphrodites, but only twofold in adult males. The majority of mtDNA in adult worms is germline associated, and germline-deficient mutants show markedly reduced mtDNA contents. With sperm-deficient or oocyte-deficient mutants, we confirm that mtDNA amplification is primarily associated with oocyte production. When mtDNA replication is inhibited, a quantitative and homogeneous arrest as L3 larvae occurs. Thus, mtDNA amplification is a necessary component of normal development and its regulation may involve an energy-sensing decision or checkpoint that can be invoked when mitochondrial energy generation is impaired.</description><identifier>ISSN: 0006-291X</identifier><identifier>EISSN: 1090-2104</identifier><identifier>DOI: 10.1006/bbrc.2002.6394</identifier><identifier>PMID: 11829454</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Animals ; Caenorhabditis elegans ; Caenorhabditis elegans - genetics ; Caenorhabditis elegans - growth & development ; Caenorhabditis elegans - metabolism ; copy number ; Disorders of Sex Development ; DNA Replication - drug effects ; DNA, Mitochondrial - drug effects ; DNA, Mitochondrial - metabolism ; Embryo, Nonmammalian - metabolism ; Ethidium - pharmacology ; ethidium bromide ; fem-1 ; fem-3 ; Gene Dosage ; Gene Expression Regulation, Developmental ; Genome ; Germ Cells - metabolism ; germline development ; glp-1 ; glp-4 ; Larva - metabolism ; larval arrest ; Male ; mitochondria ; Mitochondria - drug effects ; Mitochondria - genetics ; Mitochondria - metabolism ; mitochondrial DNA ; Oocytes - metabolism ; Spermatozoa - metabolism</subject><ispartof>Biochemical and biophysical research communications, 2002-02, Vol.291 (1), p.8-16</ispartof><rights>2002 Elsevier Science (USA)</rights><rights>2002 Elsevier Science (USA).</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c371t-5c37a2a9b0690c721fc1a7bc924bff28cd8c2da3c471e707177be7705ffa84fa3</citedby><cites>FETCH-LOGICAL-c371t-5c37a2a9b0690c721fc1a7bc924bff28cd8c2da3c471e707177be7705ffa84fa3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1006/bbrc.2002.6394$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>315,782,786,3552,27931,27932,46002</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/11829454$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Tsang, William Y.</creatorcontrib><creatorcontrib>Lemire, Bernard D.</creatorcontrib><title>Mitochondrial Genome Content Is Regulated during Nematode Development</title><title>Biochemical and biophysical research communications</title><addtitle>Biochem Biophys Res Commun</addtitle><description>Growth and development rely on the mitochondrial respiratory chain (MRC) as the major source of ATP. We measured the mitochondrial DNA (mtDNA) copy number of each of the Caenorhabditis elegans developmental stages. Embryos, L1, L2, and L3 larvae all have ∼25,000 copies of maternally derived mtDNA. The copy number increases fivefold in L4 larvae and a further sixfold in adult hermaphrodites, but only twofold in adult males. The majority of mtDNA in adult worms is germline associated, and germline-deficient mutants show markedly reduced mtDNA contents. With sperm-deficient or oocyte-deficient mutants, we confirm that mtDNA amplification is primarily associated with oocyte production. When mtDNA replication is inhibited, a quantitative and homogeneous arrest as L3 larvae occurs. Thus, mtDNA amplification is a necessary component of normal development and its regulation may involve an energy-sensing decision or checkpoint that can be invoked when mitochondrial energy generation is impaired.</description><subject>Animals</subject><subject>Caenorhabditis elegans</subject><subject>Caenorhabditis elegans - genetics</subject><subject>Caenorhabditis elegans - growth & development</subject><subject>Caenorhabditis elegans - metabolism</subject><subject>copy number</subject><subject>Disorders of Sex Development</subject><subject>DNA Replication - drug effects</subject><subject>DNA, Mitochondrial - drug effects</subject><subject>DNA, Mitochondrial - metabolism</subject><subject>Embryo, Nonmammalian - metabolism</subject><subject>Ethidium - pharmacology</subject><subject>ethidium bromide</subject><subject>fem-1</subject><subject>fem-3</subject><subject>Gene Dosage</subject><subject>Gene Expression Regulation, Developmental</subject><subject>Genome</subject><subject>Germ Cells - metabolism</subject><subject>germline development</subject><subject>glp-1</subject><subject>glp-4</subject><subject>Larva - metabolism</subject><subject>larval arrest</subject><subject>Male</subject><subject>mitochondria</subject><subject>Mitochondria - drug effects</subject><subject>Mitochondria - genetics</subject><subject>Mitochondria - metabolism</subject><subject>mitochondrial DNA</subject><subject>Oocytes - metabolism</subject><subject>Spermatozoa - metabolism</subject><issn>0006-291X</issn><issn>1090-2104</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkEtLAzEUhYMotj62LmVW7qbmpulkspRaH1AVRMFdyCR3NDIzqclMwX9vSguuxNXZfOfA-Qg5AzoBSovLqgpmwihlk2Iq-R4ZA5U0Z0D5PhnTRORMwtuIHMX4SSkAL-QhGQGUTPIZH5PFg-u9-fCdDU432S12vsVs7rseuz67j9kzvg-N7tFmdgiue88esdW9t5hd4xobv2oTeEIOat1EPN3lMXm9WbzM7_Ll0-39_GqZm6mAPp-l0EzLihaSGsGgNqBFZSTjVV2z0tjSMKunhgtAQQUIUaEQdFbXuuS1nh6Ti-3uKvivAWOvWhcNNo3u0A9RCeCpyuW_YPpfcMEhgZMtaIKPMWCtVsG1OnwroGpjWG0Mq41htTGcCue75aFq0f7iO6UJKLcAJhFrh0FF47AzaF1A0yvr3V_bP0Ciik0</recordid><startdate>20020215</startdate><enddate>20020215</enddate><creator>Tsang, William Y.</creator><creator>Lemire, Bernard D.</creator><general>Elsevier Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>20020215</creationdate><title>Mitochondrial Genome Content Is Regulated during Nematode Development</title><author>Tsang, William Y. ; Lemire, Bernard D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c371t-5c37a2a9b0690c721fc1a7bc924bff28cd8c2da3c471e707177be7705ffa84fa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Animals</topic><topic>Caenorhabditis elegans</topic><topic>Caenorhabditis elegans - genetics</topic><topic>Caenorhabditis elegans - growth & development</topic><topic>Caenorhabditis elegans - metabolism</topic><topic>copy number</topic><topic>Disorders of Sex Development</topic><topic>DNA Replication - drug effects</topic><topic>DNA, Mitochondrial - drug effects</topic><topic>DNA, Mitochondrial - metabolism</topic><topic>Embryo, Nonmammalian - metabolism</topic><topic>Ethidium - pharmacology</topic><topic>ethidium bromide</topic><topic>fem-1</topic><topic>fem-3</topic><topic>Gene Dosage</topic><topic>Gene Expression Regulation, Developmental</topic><topic>Genome</topic><topic>Germ Cells - metabolism</topic><topic>germline development</topic><topic>glp-1</topic><topic>glp-4</topic><topic>Larva - metabolism</topic><topic>larval arrest</topic><topic>Male</topic><topic>mitochondria</topic><topic>Mitochondria - drug effects</topic><topic>Mitochondria - genetics</topic><topic>Mitochondria - metabolism</topic><topic>mitochondrial DNA</topic><topic>Oocytes - metabolism</topic><topic>Spermatozoa - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tsang, William Y.</creatorcontrib><creatorcontrib>Lemire, Bernard D.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Biochemical and biophysical research communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tsang, William Y.</au><au>Lemire, Bernard D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mitochondrial Genome Content Is Regulated during Nematode Development</atitle><jtitle>Biochemical and biophysical research communications</jtitle><addtitle>Biochem Biophys Res Commun</addtitle><date>2002-02-15</date><risdate>2002</risdate><volume>291</volume><issue>1</issue><spage>8</spage><epage>16</epage><pages>8-16</pages><issn>0006-291X</issn><eissn>1090-2104</eissn><abstract>Growth and development rely on the mitochondrial respiratory chain (MRC) as the major source of ATP. We measured the mitochondrial DNA (mtDNA) copy number of each of the Caenorhabditis elegans developmental stages. Embryos, L1, L2, and L3 larvae all have ∼25,000 copies of maternally derived mtDNA. The copy number increases fivefold in L4 larvae and a further sixfold in adult hermaphrodites, but only twofold in adult males. The majority of mtDNA in adult worms is germline associated, and germline-deficient mutants show markedly reduced mtDNA contents. With sperm-deficient or oocyte-deficient mutants, we confirm that mtDNA amplification is primarily associated with oocyte production. When mtDNA replication is inhibited, a quantitative and homogeneous arrest as L3 larvae occurs. Thus, mtDNA amplification is a necessary component of normal development and its regulation may involve an energy-sensing decision or checkpoint that can be invoked when mitochondrial energy generation is impaired.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>11829454</pmid><doi>10.1006/bbrc.2002.6394</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0006-291X |
ispartof | Biochemical and biophysical research communications, 2002-02, Vol.291 (1), p.8-16 |
issn | 0006-291X 1090-2104 |
language | eng |
recordid | cdi_proquest_miscellaneous_71447149 |
source | MEDLINE; Access via ScienceDirect (Elsevier) |
subjects | Animals Caenorhabditis elegans Caenorhabditis elegans - genetics Caenorhabditis elegans - growth & development Caenorhabditis elegans - metabolism copy number Disorders of Sex Development DNA Replication - drug effects DNA, Mitochondrial - drug effects DNA, Mitochondrial - metabolism Embryo, Nonmammalian - metabolism Ethidium - pharmacology ethidium bromide fem-1 fem-3 Gene Dosage Gene Expression Regulation, Developmental Genome Germ Cells - metabolism germline development glp-1 glp-4 Larva - metabolism larval arrest Male mitochondria Mitochondria - drug effects Mitochondria - genetics Mitochondria - metabolism mitochondrial DNA Oocytes - metabolism Spermatozoa - metabolism |
title | Mitochondrial Genome Content Is Regulated during Nematode Development |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-04T12%3A21%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mitochondrial%20Genome%20Content%20Is%20Regulated%20during%20Nematode%20Development&rft.jtitle=Biochemical%20and%20biophysical%20research%20communications&rft.au=Tsang,%20William%20Y.&rft.date=2002-02-15&rft.volume=291&rft.issue=1&rft.spage=8&rft.epage=16&rft.pages=8-16&rft.issn=0006-291X&rft.eissn=1090-2104&rft_id=info:doi/10.1006/bbrc.2002.6394&rft_dat=%3Cproquest_cross%3E18264741%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=18264741&rft_id=info:pmid/11829454&rft_els_id=S0006291X02963941&rfr_iscdi=true |