Mitochondrial Genome Content Is Regulated during Nematode Development

Growth and development rely on the mitochondrial respiratory chain (MRC) as the major source of ATP. We measured the mitochondrial DNA (mtDNA) copy number of each of the Caenorhabditis elegans developmental stages. Embryos, L1, L2, and L3 larvae all have ∼25,000 copies of maternally derived mtDNA. T...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biochemical and biophysical research communications 2002-02, Vol.291 (1), p.8-16
Hauptverfasser: Tsang, William Y., Lemire, Bernard D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 16
container_issue 1
container_start_page 8
container_title Biochemical and biophysical research communications
container_volume 291
creator Tsang, William Y.
Lemire, Bernard D.
description Growth and development rely on the mitochondrial respiratory chain (MRC) as the major source of ATP. We measured the mitochondrial DNA (mtDNA) copy number of each of the Caenorhabditis elegans developmental stages. Embryos, L1, L2, and L3 larvae all have ∼25,000 copies of maternally derived mtDNA. The copy number increases fivefold in L4 larvae and a further sixfold in adult hermaphrodites, but only twofold in adult males. The majority of mtDNA in adult worms is germline associated, and germline-deficient mutants show markedly reduced mtDNA contents. With sperm-deficient or oocyte-deficient mutants, we confirm that mtDNA amplification is primarily associated with oocyte production. When mtDNA replication is inhibited, a quantitative and homogeneous arrest as L3 larvae occurs. Thus, mtDNA amplification is a necessary component of normal development and its regulation may involve an energy-sensing decision or checkpoint that can be invoked when mitochondrial energy generation is impaired.
doi_str_mv 10.1006/bbrc.2002.6394
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_71447149</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0006291X02963941</els_id><sourcerecordid>18264741</sourcerecordid><originalsourceid>FETCH-LOGICAL-c371t-5c37a2a9b0690c721fc1a7bc924bff28cd8c2da3c471e707177be7705ffa84fa3</originalsourceid><addsrcrecordid>eNqFkEtLAzEUhYMotj62LmVW7qbmpulkspRaH1AVRMFdyCR3NDIzqclMwX9vSguuxNXZfOfA-Qg5AzoBSovLqgpmwihlk2Iq-R4ZA5U0Z0D5PhnTRORMwtuIHMX4SSkAL-QhGQGUTPIZH5PFg-u9-fCdDU432S12vsVs7rseuz67j9kzvg-N7tFmdgiue88esdW9t5hd4xobv2oTeEIOat1EPN3lMXm9WbzM7_Ll0-39_GqZm6mAPp-l0EzLihaSGsGgNqBFZSTjVV2z0tjSMKunhgtAQQUIUaEQdFbXuuS1nh6Ti-3uKvivAWOvWhcNNo3u0A9RCeCpyuW_YPpfcMEhgZMtaIKPMWCtVsG1OnwroGpjWG0Mq41htTGcCue75aFq0f7iO6UJKLcAJhFrh0FF47AzaF1A0yvr3V_bP0Ciik0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>18264741</pqid></control><display><type>article</type><title>Mitochondrial Genome Content Is Regulated during Nematode Development</title><source>MEDLINE</source><source>Access via ScienceDirect (Elsevier)</source><creator>Tsang, William Y. ; Lemire, Bernard D.</creator><creatorcontrib>Tsang, William Y. ; Lemire, Bernard D.</creatorcontrib><description>Growth and development rely on the mitochondrial respiratory chain (MRC) as the major source of ATP. We measured the mitochondrial DNA (mtDNA) copy number of each of the Caenorhabditis elegans developmental stages. Embryos, L1, L2, and L3 larvae all have ∼25,000 copies of maternally derived mtDNA. The copy number increases fivefold in L4 larvae and a further sixfold in adult hermaphrodites, but only twofold in adult males. The majority of mtDNA in adult worms is germline associated, and germline-deficient mutants show markedly reduced mtDNA contents. With sperm-deficient or oocyte-deficient mutants, we confirm that mtDNA amplification is primarily associated with oocyte production. When mtDNA replication is inhibited, a quantitative and homogeneous arrest as L3 larvae occurs. Thus, mtDNA amplification is a necessary component of normal development and its regulation may involve an energy-sensing decision or checkpoint that can be invoked when mitochondrial energy generation is impaired.</description><identifier>ISSN: 0006-291X</identifier><identifier>EISSN: 1090-2104</identifier><identifier>DOI: 10.1006/bbrc.2002.6394</identifier><identifier>PMID: 11829454</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Animals ; Caenorhabditis elegans ; Caenorhabditis elegans - genetics ; Caenorhabditis elegans - growth &amp; development ; Caenorhabditis elegans - metabolism ; copy number ; Disorders of Sex Development ; DNA Replication - drug effects ; DNA, Mitochondrial - drug effects ; DNA, Mitochondrial - metabolism ; Embryo, Nonmammalian - metabolism ; Ethidium - pharmacology ; ethidium bromide ; fem-1 ; fem-3 ; Gene Dosage ; Gene Expression Regulation, Developmental ; Genome ; Germ Cells - metabolism ; germline development ; glp-1 ; glp-4 ; Larva - metabolism ; larval arrest ; Male ; mitochondria ; Mitochondria - drug effects ; Mitochondria - genetics ; Mitochondria - metabolism ; mitochondrial DNA ; Oocytes - metabolism ; Spermatozoa - metabolism</subject><ispartof>Biochemical and biophysical research communications, 2002-02, Vol.291 (1), p.8-16</ispartof><rights>2002 Elsevier Science (USA)</rights><rights>2002 Elsevier Science (USA).</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c371t-5c37a2a9b0690c721fc1a7bc924bff28cd8c2da3c471e707177be7705ffa84fa3</citedby><cites>FETCH-LOGICAL-c371t-5c37a2a9b0690c721fc1a7bc924bff28cd8c2da3c471e707177be7705ffa84fa3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1006/bbrc.2002.6394$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>315,782,786,3552,27931,27932,46002</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/11829454$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Tsang, William Y.</creatorcontrib><creatorcontrib>Lemire, Bernard D.</creatorcontrib><title>Mitochondrial Genome Content Is Regulated during Nematode Development</title><title>Biochemical and biophysical research communications</title><addtitle>Biochem Biophys Res Commun</addtitle><description>Growth and development rely on the mitochondrial respiratory chain (MRC) as the major source of ATP. We measured the mitochondrial DNA (mtDNA) copy number of each of the Caenorhabditis elegans developmental stages. Embryos, L1, L2, and L3 larvae all have ∼25,000 copies of maternally derived mtDNA. The copy number increases fivefold in L4 larvae and a further sixfold in adult hermaphrodites, but only twofold in adult males. The majority of mtDNA in adult worms is germline associated, and germline-deficient mutants show markedly reduced mtDNA contents. With sperm-deficient or oocyte-deficient mutants, we confirm that mtDNA amplification is primarily associated with oocyte production. When mtDNA replication is inhibited, a quantitative and homogeneous arrest as L3 larvae occurs. Thus, mtDNA amplification is a necessary component of normal development and its regulation may involve an energy-sensing decision or checkpoint that can be invoked when mitochondrial energy generation is impaired.</description><subject>Animals</subject><subject>Caenorhabditis elegans</subject><subject>Caenorhabditis elegans - genetics</subject><subject>Caenorhabditis elegans - growth &amp; development</subject><subject>Caenorhabditis elegans - metabolism</subject><subject>copy number</subject><subject>Disorders of Sex Development</subject><subject>DNA Replication - drug effects</subject><subject>DNA, Mitochondrial - drug effects</subject><subject>DNA, Mitochondrial - metabolism</subject><subject>Embryo, Nonmammalian - metabolism</subject><subject>Ethidium - pharmacology</subject><subject>ethidium bromide</subject><subject>fem-1</subject><subject>fem-3</subject><subject>Gene Dosage</subject><subject>Gene Expression Regulation, Developmental</subject><subject>Genome</subject><subject>Germ Cells - metabolism</subject><subject>germline development</subject><subject>glp-1</subject><subject>glp-4</subject><subject>Larva - metabolism</subject><subject>larval arrest</subject><subject>Male</subject><subject>mitochondria</subject><subject>Mitochondria - drug effects</subject><subject>Mitochondria - genetics</subject><subject>Mitochondria - metabolism</subject><subject>mitochondrial DNA</subject><subject>Oocytes - metabolism</subject><subject>Spermatozoa - metabolism</subject><issn>0006-291X</issn><issn>1090-2104</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkEtLAzEUhYMotj62LmVW7qbmpulkspRaH1AVRMFdyCR3NDIzqclMwX9vSguuxNXZfOfA-Qg5AzoBSovLqgpmwihlk2Iq-R4ZA5U0Z0D5PhnTRORMwtuIHMX4SSkAL-QhGQGUTPIZH5PFg-u9-fCdDU432S12vsVs7rseuz67j9kzvg-N7tFmdgiue88esdW9t5hd4xobv2oTeEIOat1EPN3lMXm9WbzM7_Ll0-39_GqZm6mAPp-l0EzLihaSGsGgNqBFZSTjVV2z0tjSMKunhgtAQQUIUaEQdFbXuuS1nh6Ti-3uKvivAWOvWhcNNo3u0A9RCeCpyuW_YPpfcMEhgZMtaIKPMWCtVsG1OnwroGpjWG0Mq41htTGcCue75aFq0f7iO6UJKLcAJhFrh0FF47AzaF1A0yvr3V_bP0Ciik0</recordid><startdate>20020215</startdate><enddate>20020215</enddate><creator>Tsang, William Y.</creator><creator>Lemire, Bernard D.</creator><general>Elsevier Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>20020215</creationdate><title>Mitochondrial Genome Content Is Regulated during Nematode Development</title><author>Tsang, William Y. ; Lemire, Bernard D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c371t-5c37a2a9b0690c721fc1a7bc924bff28cd8c2da3c471e707177be7705ffa84fa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Animals</topic><topic>Caenorhabditis elegans</topic><topic>Caenorhabditis elegans - genetics</topic><topic>Caenorhabditis elegans - growth &amp; development</topic><topic>Caenorhabditis elegans - metabolism</topic><topic>copy number</topic><topic>Disorders of Sex Development</topic><topic>DNA Replication - drug effects</topic><topic>DNA, Mitochondrial - drug effects</topic><topic>DNA, Mitochondrial - metabolism</topic><topic>Embryo, Nonmammalian - metabolism</topic><topic>Ethidium - pharmacology</topic><topic>ethidium bromide</topic><topic>fem-1</topic><topic>fem-3</topic><topic>Gene Dosage</topic><topic>Gene Expression Regulation, Developmental</topic><topic>Genome</topic><topic>Germ Cells - metabolism</topic><topic>germline development</topic><topic>glp-1</topic><topic>glp-4</topic><topic>Larva - metabolism</topic><topic>larval arrest</topic><topic>Male</topic><topic>mitochondria</topic><topic>Mitochondria - drug effects</topic><topic>Mitochondria - genetics</topic><topic>Mitochondria - metabolism</topic><topic>mitochondrial DNA</topic><topic>Oocytes - metabolism</topic><topic>Spermatozoa - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tsang, William Y.</creatorcontrib><creatorcontrib>Lemire, Bernard D.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Biochemical and biophysical research communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tsang, William Y.</au><au>Lemire, Bernard D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mitochondrial Genome Content Is Regulated during Nematode Development</atitle><jtitle>Biochemical and biophysical research communications</jtitle><addtitle>Biochem Biophys Res Commun</addtitle><date>2002-02-15</date><risdate>2002</risdate><volume>291</volume><issue>1</issue><spage>8</spage><epage>16</epage><pages>8-16</pages><issn>0006-291X</issn><eissn>1090-2104</eissn><abstract>Growth and development rely on the mitochondrial respiratory chain (MRC) as the major source of ATP. We measured the mitochondrial DNA (mtDNA) copy number of each of the Caenorhabditis elegans developmental stages. Embryos, L1, L2, and L3 larvae all have ∼25,000 copies of maternally derived mtDNA. The copy number increases fivefold in L4 larvae and a further sixfold in adult hermaphrodites, but only twofold in adult males. The majority of mtDNA in adult worms is germline associated, and germline-deficient mutants show markedly reduced mtDNA contents. With sperm-deficient or oocyte-deficient mutants, we confirm that mtDNA amplification is primarily associated with oocyte production. When mtDNA replication is inhibited, a quantitative and homogeneous arrest as L3 larvae occurs. Thus, mtDNA amplification is a necessary component of normal development and its regulation may involve an energy-sensing decision or checkpoint that can be invoked when mitochondrial energy generation is impaired.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>11829454</pmid><doi>10.1006/bbrc.2002.6394</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0006-291X
ispartof Biochemical and biophysical research communications, 2002-02, Vol.291 (1), p.8-16
issn 0006-291X
1090-2104
language eng
recordid cdi_proquest_miscellaneous_71447149
source MEDLINE; Access via ScienceDirect (Elsevier)
subjects Animals
Caenorhabditis elegans
Caenorhabditis elegans - genetics
Caenorhabditis elegans - growth & development
Caenorhabditis elegans - metabolism
copy number
Disorders of Sex Development
DNA Replication - drug effects
DNA, Mitochondrial - drug effects
DNA, Mitochondrial - metabolism
Embryo, Nonmammalian - metabolism
Ethidium - pharmacology
ethidium bromide
fem-1
fem-3
Gene Dosage
Gene Expression Regulation, Developmental
Genome
Germ Cells - metabolism
germline development
glp-1
glp-4
Larva - metabolism
larval arrest
Male
mitochondria
Mitochondria - drug effects
Mitochondria - genetics
Mitochondria - metabolism
mitochondrial DNA
Oocytes - metabolism
Spermatozoa - metabolism
title Mitochondrial Genome Content Is Regulated during Nematode Development
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-04T12%3A21%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mitochondrial%20Genome%20Content%20Is%20Regulated%20during%20Nematode%20Development&rft.jtitle=Biochemical%20and%20biophysical%20research%20communications&rft.au=Tsang,%20William%20Y.&rft.date=2002-02-15&rft.volume=291&rft.issue=1&rft.spage=8&rft.epage=16&rft.pages=8-16&rft.issn=0006-291X&rft.eissn=1090-2104&rft_id=info:doi/10.1006/bbrc.2002.6394&rft_dat=%3Cproquest_cross%3E18264741%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=18264741&rft_id=info:pmid/11829454&rft_els_id=S0006291X02963941&rfr_iscdi=true