Computational Studies on Tetrahydropyrimidine-2-one HIV-1 Protease Inhibitors:  Improving Three-Dimensional Quantitative Structure−Activity Relationship Comparative Molecular Field Analysis Models by Inclusion of Calculated Inhibitor- and Receptor-Based Properties

A computational chemistry study has been performed on a series of tetrahydropyrimidine-2-ones (THPs) as HIV-1 protease (HIV-1 PR) inhibitors. The present investigation focuses on the correlation of inhibitor−enzyme complexation energies (E compl), inhibitor solvation energies E solv[I], and both pol...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of medicinal chemistry 2002-02, Vol.45 (4), p.973-983
Hauptverfasser: Nair, Anil C, Jayatilleke, Philippa, Wang, Xia, Miertus, Stanislav, Welsh, William J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 983
container_issue 4
container_start_page 973
container_title Journal of medicinal chemistry
container_volume 45
creator Nair, Anil C
Jayatilleke, Philippa
Wang, Xia
Miertus, Stanislav
Welsh, William J
description A computational chemistry study has been performed on a series of tetrahydropyrimidine-2-ones (THPs) as HIV-1 protease (HIV-1 PR) inhibitors. The present investigation focuses on the correlation of inhibitor−enzyme complexation energies (E compl), inhibitor solvation energies E solv[I], and both polar and nonpolar buried surface areas (BSAs) with the observed values of the binding affinity (pK I). Various combinations of these specific inhibitor- and receptor-based properties were also evaluated as additional descriptors to three-dimensional quantitative structure−activity relationship (3D-QSAR) models constructed using comparative molecular field analysis (CoMFA). Linear regression of the observed pK I values with E compl, E solv[I], and the BSAs yielded a strong correlation in terms of both self-consistency (r 2 ≈ 0.90) and internal predictive ability (r cv 2 > 0.50). The 3D-QSAR models obtained from CoMFA using standard partial least-squares (PLS) analysis also yielded a strong correlation between the CoMFA fields and the experimental pK i (r 2 = 0.96; r cv 2 = 0.58). Various “enhanced” 3D-QSAR models were constructed in which different combinations of the E compl, E solv[I], and BSAs were added as additional descriptors to the default steric−electrostatic CoMFA fields. Inclusion of E solv[I] in particular yielded significant improvement in the predictive ability (r cv 2 ≈ 0.80) of the resultant 3D-QSAR model.
doi_str_mv 10.1021/jm010417v
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_71443446</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>71443446</sourcerecordid><originalsourceid>FETCH-LOGICAL-a379t-42b35a61c21cab9b06610afaa8017d1093b8a8c8d4b5910e4d860ade5c5ff0713</originalsourceid><addsrcrecordid>eNptkc1uEzEUhQcEoqFlwQsgb0BiMWDPf7pLA00jFZHSwHZ0x75DHDzjwfZEzI4lbHnEPgkeEjUbVpZ9P51zrk8QPGf0DaMRe7ttKKMJy3cPgwlLIxomBU0eBRNKoyiMsig-CZ5au6WUxiyKnwQnjBUxmzI6eXA2103XO3BSt6DIreuFREt0S9boDGwGYXQ3GNlIIVsMo1C3SK6WX0JGVkY7BItk2W5kJZ029vzu52-ybDqjd7L9StYbgxi-kw22dq9_00Pr5Gi3Q29meu56g3e__sy4f5JuIJ9Q_QtjN7IjYzgwe_qDVsh7BYZcSlSCzLzeYKX1A4HKkmrwQbjqRyeiazIHNeIOxTFgSKAV3oJjN94ufHox7tGhcX7ts-BxDcris8N5Gny-fL-eX4XXHxfL-ew6hDifujCJqjiFjPGIcaimFc0yRqEGKCjLBaPTuCqg4IVIqtR_MiaiyCgITHla1zRn8Wnwaq_rP-p7j9aVjbQclYIWdW_LnCVJnCSZB1_vQW60tQbrsvNVgBlKRsux-vK-es--OIj2VYPiSB669sDLAwCWg6oNtFzaIxcnBWPZyIV7TlqHP-7nYL6VWR7nable3ZbpIl9Nby6ScnHUBW7Lre6NL8b-J-BftM_Z2w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>71443446</pqid></control><display><type>article</type><title>Computational Studies on Tetrahydropyrimidine-2-one HIV-1 Protease Inhibitors:  Improving Three-Dimensional Quantitative Structure−Activity Relationship Comparative Molecular Field Analysis Models by Inclusion of Calculated Inhibitor- and Receptor-Based Properties</title><source>ACS Publications</source><source>MEDLINE</source><creator>Nair, Anil C ; Jayatilleke, Philippa ; Wang, Xia ; Miertus, Stanislav ; Welsh, William J</creator><creatorcontrib>Nair, Anil C ; Jayatilleke, Philippa ; Wang, Xia ; Miertus, Stanislav ; Welsh, William J</creatorcontrib><description>A computational chemistry study has been performed on a series of tetrahydropyrimidine-2-ones (THPs) as HIV-1 protease (HIV-1 PR) inhibitors. The present investigation focuses on the correlation of inhibitor−enzyme complexation energies (E compl), inhibitor solvation energies E solv[I], and both polar and nonpolar buried surface areas (BSAs) with the observed values of the binding affinity (pK I). Various combinations of these specific inhibitor- and receptor-based properties were also evaluated as additional descriptors to three-dimensional quantitative structure−activity relationship (3D-QSAR) models constructed using comparative molecular field analysis (CoMFA). Linear regression of the observed pK I values with E compl, E solv[I], and the BSAs yielded a strong correlation in terms of both self-consistency (r 2 ≈ 0.90) and internal predictive ability (r cv 2 &gt; 0.50). The 3D-QSAR models obtained from CoMFA using standard partial least-squares (PLS) analysis also yielded a strong correlation between the CoMFA fields and the experimental pK i (r 2 = 0.96; r cv 2 = 0.58). Various “enhanced” 3D-QSAR models were constructed in which different combinations of the E compl, E solv[I], and BSAs were added as additional descriptors to the default steric−electrostatic CoMFA fields. Inclusion of E solv[I] in particular yielded significant improvement in the predictive ability (r cv 2 ≈ 0.80) of the resultant 3D-QSAR model.</description><identifier>ISSN: 0022-2623</identifier><identifier>EISSN: 1520-4804</identifier><identifier>DOI: 10.1021/jm010417v</identifier><identifier>PMID: 11831910</identifier><identifier>CODEN: JMCMAR</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>Antibiotics. Antiinfectious agents. Antiparasitic agents ; Antiviral agents ; Biological and medical sciences ; HIV Protease - chemistry ; Ligands ; Medical sciences ; Pharmacology. Drug treatments ; Protease Inhibitors - chemistry ; Protein Binding ; Pyrimidines - chemistry ; Quantitative Structure-Activity Relationship ; Thermodynamics</subject><ispartof>Journal of medicinal chemistry, 2002-02, Vol.45 (4), p.973-983</ispartof><rights>Copyright © 2002 American Chemical Society</rights><rights>2002 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a379t-42b35a61c21cab9b06610afaa8017d1093b8a8c8d4b5910e4d860ade5c5ff0713</citedby><cites>FETCH-LOGICAL-a379t-42b35a61c21cab9b06610afaa8017d1093b8a8c8d4b5910e4d860ade5c5ff0713</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/jm010417v$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/jm010417v$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=13481160$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/11831910$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Nair, Anil C</creatorcontrib><creatorcontrib>Jayatilleke, Philippa</creatorcontrib><creatorcontrib>Wang, Xia</creatorcontrib><creatorcontrib>Miertus, Stanislav</creatorcontrib><creatorcontrib>Welsh, William J</creatorcontrib><title>Computational Studies on Tetrahydropyrimidine-2-one HIV-1 Protease Inhibitors:  Improving Three-Dimensional Quantitative Structure−Activity Relationship Comparative Molecular Field Analysis Models by Inclusion of Calculated Inhibitor- and Receptor-Based Properties</title><title>Journal of medicinal chemistry</title><addtitle>J. Med. Chem</addtitle><description>A computational chemistry study has been performed on a series of tetrahydropyrimidine-2-ones (THPs) as HIV-1 protease (HIV-1 PR) inhibitors. The present investigation focuses on the correlation of inhibitor−enzyme complexation energies (E compl), inhibitor solvation energies E solv[I], and both polar and nonpolar buried surface areas (BSAs) with the observed values of the binding affinity (pK I). Various combinations of these specific inhibitor- and receptor-based properties were also evaluated as additional descriptors to three-dimensional quantitative structure−activity relationship (3D-QSAR) models constructed using comparative molecular field analysis (CoMFA). Linear regression of the observed pK I values with E compl, E solv[I], and the BSAs yielded a strong correlation in terms of both self-consistency (r 2 ≈ 0.90) and internal predictive ability (r cv 2 &gt; 0.50). The 3D-QSAR models obtained from CoMFA using standard partial least-squares (PLS) analysis also yielded a strong correlation between the CoMFA fields and the experimental pK i (r 2 = 0.96; r cv 2 = 0.58). Various “enhanced” 3D-QSAR models were constructed in which different combinations of the E compl, E solv[I], and BSAs were added as additional descriptors to the default steric−electrostatic CoMFA fields. Inclusion of E solv[I] in particular yielded significant improvement in the predictive ability (r cv 2 ≈ 0.80) of the resultant 3D-QSAR model.</description><subject>Antibiotics. Antiinfectious agents. Antiparasitic agents</subject><subject>Antiviral agents</subject><subject>Biological and medical sciences</subject><subject>HIV Protease - chemistry</subject><subject>Ligands</subject><subject>Medical sciences</subject><subject>Pharmacology. Drug treatments</subject><subject>Protease Inhibitors - chemistry</subject><subject>Protein Binding</subject><subject>Pyrimidines - chemistry</subject><subject>Quantitative Structure-Activity Relationship</subject><subject>Thermodynamics</subject><issn>0022-2623</issn><issn>1520-4804</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNptkc1uEzEUhQcEoqFlwQsgb0BiMWDPf7pLA00jFZHSwHZ0x75DHDzjwfZEzI4lbHnEPgkeEjUbVpZ9P51zrk8QPGf0DaMRe7ttKKMJy3cPgwlLIxomBU0eBRNKoyiMsig-CZ5au6WUxiyKnwQnjBUxmzI6eXA2103XO3BSt6DIreuFREt0S9boDGwGYXQ3GNlIIVsMo1C3SK6WX0JGVkY7BItk2W5kJZ029vzu52-ybDqjd7L9StYbgxi-kw22dq9_00Pr5Gi3Q29meu56g3e__sy4f5JuIJ9Q_QtjN7IjYzgwe_qDVsh7BYZcSlSCzLzeYKX1A4HKkmrwQbjqRyeiazIHNeIOxTFgSKAV3oJjN94ufHox7tGhcX7ts-BxDcris8N5Gny-fL-eX4XXHxfL-ew6hDifujCJqjiFjPGIcaimFc0yRqEGKCjLBaPTuCqg4IVIqtR_MiaiyCgITHla1zRn8Wnwaq_rP-p7j9aVjbQclYIWdW_LnCVJnCSZB1_vQW60tQbrsvNVgBlKRsux-vK-es--OIj2VYPiSB669sDLAwCWg6oNtFzaIxcnBWPZyIV7TlqHP-7nYL6VWR7nable3ZbpIl9Nby6ScnHUBW7Lre6NL8b-J-BftM_Z2w</recordid><startdate>20020214</startdate><enddate>20020214</enddate><creator>Nair, Anil C</creator><creator>Jayatilleke, Philippa</creator><creator>Wang, Xia</creator><creator>Miertus, Stanislav</creator><creator>Welsh, William J</creator><general>American Chemical Society</general><scope>BSCLL</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20020214</creationdate><title>Computational Studies on Tetrahydropyrimidine-2-one HIV-1 Protease Inhibitors:  Improving Three-Dimensional Quantitative Structure−Activity Relationship Comparative Molecular Field Analysis Models by Inclusion of Calculated Inhibitor- and Receptor-Based Properties</title><author>Nair, Anil C ; Jayatilleke, Philippa ; Wang, Xia ; Miertus, Stanislav ; Welsh, William J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a379t-42b35a61c21cab9b06610afaa8017d1093b8a8c8d4b5910e4d860ade5c5ff0713</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Antibiotics. Antiinfectious agents. Antiparasitic agents</topic><topic>Antiviral agents</topic><topic>Biological and medical sciences</topic><topic>HIV Protease - chemistry</topic><topic>Ligands</topic><topic>Medical sciences</topic><topic>Pharmacology. Drug treatments</topic><topic>Protease Inhibitors - chemistry</topic><topic>Protein Binding</topic><topic>Pyrimidines - chemistry</topic><topic>Quantitative Structure-Activity Relationship</topic><topic>Thermodynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nair, Anil C</creatorcontrib><creatorcontrib>Jayatilleke, Philippa</creatorcontrib><creatorcontrib>Wang, Xia</creatorcontrib><creatorcontrib>Miertus, Stanislav</creatorcontrib><creatorcontrib>Welsh, William J</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of medicinal chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nair, Anil C</au><au>Jayatilleke, Philippa</au><au>Wang, Xia</au><au>Miertus, Stanislav</au><au>Welsh, William J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Computational Studies on Tetrahydropyrimidine-2-one HIV-1 Protease Inhibitors:  Improving Three-Dimensional Quantitative Structure−Activity Relationship Comparative Molecular Field Analysis Models by Inclusion of Calculated Inhibitor- and Receptor-Based Properties</atitle><jtitle>Journal of medicinal chemistry</jtitle><addtitle>J. Med. Chem</addtitle><date>2002-02-14</date><risdate>2002</risdate><volume>45</volume><issue>4</issue><spage>973</spage><epage>983</epage><pages>973-983</pages><issn>0022-2623</issn><eissn>1520-4804</eissn><coden>JMCMAR</coden><abstract>A computational chemistry study has been performed on a series of tetrahydropyrimidine-2-ones (THPs) as HIV-1 protease (HIV-1 PR) inhibitors. The present investigation focuses on the correlation of inhibitor−enzyme complexation energies (E compl), inhibitor solvation energies E solv[I], and both polar and nonpolar buried surface areas (BSAs) with the observed values of the binding affinity (pK I). Various combinations of these specific inhibitor- and receptor-based properties were also evaluated as additional descriptors to three-dimensional quantitative structure−activity relationship (3D-QSAR) models constructed using comparative molecular field analysis (CoMFA). Linear regression of the observed pK I values with E compl, E solv[I], and the BSAs yielded a strong correlation in terms of both self-consistency (r 2 ≈ 0.90) and internal predictive ability (r cv 2 &gt; 0.50). The 3D-QSAR models obtained from CoMFA using standard partial least-squares (PLS) analysis also yielded a strong correlation between the CoMFA fields and the experimental pK i (r 2 = 0.96; r cv 2 = 0.58). Various “enhanced” 3D-QSAR models were constructed in which different combinations of the E compl, E solv[I], and BSAs were added as additional descriptors to the default steric−electrostatic CoMFA fields. Inclusion of E solv[I] in particular yielded significant improvement in the predictive ability (r cv 2 ≈ 0.80) of the resultant 3D-QSAR model.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><pmid>11831910</pmid><doi>10.1021/jm010417v</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0022-2623
ispartof Journal of medicinal chemistry, 2002-02, Vol.45 (4), p.973-983
issn 0022-2623
1520-4804
language eng
recordid cdi_proquest_miscellaneous_71443446
source ACS Publications; MEDLINE
subjects Antibiotics. Antiinfectious agents. Antiparasitic agents
Antiviral agents
Biological and medical sciences
HIV Protease - chemistry
Ligands
Medical sciences
Pharmacology. Drug treatments
Protease Inhibitors - chemistry
Protein Binding
Pyrimidines - chemistry
Quantitative Structure-Activity Relationship
Thermodynamics
title Computational Studies on Tetrahydropyrimidine-2-one HIV-1 Protease Inhibitors:  Improving Three-Dimensional Quantitative Structure−Activity Relationship Comparative Molecular Field Analysis Models by Inclusion of Calculated Inhibitor- and Receptor-Based Properties
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T20%3A32%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Computational%20Studies%20on%20Tetrahydropyrimidine-2-one%20HIV-1%20Protease%20Inhibitors:%E2%80%89%20Improving%20Three-Dimensional%20Quantitative%20Structure%E2%88%92Activity%20Relationship%20Comparative%20Molecular%20Field%20Analysis%20Models%20by%20Inclusion%20of%20Calculated%20Inhibitor-%20and%20Receptor-Based%20Properties&rft.jtitle=Journal%20of%20medicinal%20chemistry&rft.au=Nair,%20Anil%20C&rft.date=2002-02-14&rft.volume=45&rft.issue=4&rft.spage=973&rft.epage=983&rft.pages=973-983&rft.issn=0022-2623&rft.eissn=1520-4804&rft.coden=JMCMAR&rft_id=info:doi/10.1021/jm010417v&rft_dat=%3Cproquest_cross%3E71443446%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=71443446&rft_id=info:pmid/11831910&rfr_iscdi=true