Neurodevelopmental Aspects of Spatial Navigation: A Virtual Reality fMRI Study

Navigation in spatial contexts has been studied in diverse species, yielding insights into underlying neural mechanisms and their phylogenetic progression. Spatial navigation in humans is marked by age-related changes that may carry important implications for understanding cortical development. The...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:NeuroImage (Orlando, Fla.) Fla.), 2002-02, Vol.15 (2), p.396-406
Hauptverfasser: Pine, Daniel S., Grun, Joseph, Maguire, Eleanor A., Burgess, Neil, Zarahn, Eric, Koda, Vivian, Fyer, Abby, Szeszko, Philip R., Bilder, Robert M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 406
container_issue 2
container_start_page 396
container_title NeuroImage (Orlando, Fla.)
container_volume 15
creator Pine, Daniel S.
Grun, Joseph
Maguire, Eleanor A.
Burgess, Neil
Zarahn, Eric
Koda, Vivian
Fyer, Abby
Szeszko, Philip R.
Bilder, Robert M.
description Navigation in spatial contexts has been studied in diverse species, yielding insights into underlying neural mechanisms and their phylogenetic progression. Spatial navigation in humans is marked by age-related changes that may carry important implications for understanding cortical development. The emergence of “allocentric” processing, reflecting that ability to use viewer-independent spatial abstractions, represents an important developmental change. We used fMRI to map brain regions engaged during memory-guided navigation in a virtual reality environment in adolescents and adults. Blood oxygen level-dependent (BOLD) signal was monitored in eight adolescents and eight adults in a 1.5-T MRI scanner during three conditions: (1) memory-guided navigation (NAV); (2) arrow-guided navigation (ARROW); and (3) fixation (FIX). We quantified navigation ability during scanning and allocentric memory after scanning, based on subjects' ability to label a previously unseen, aerial view of the town. Adolescents and adults exhibited similar memory-guided navigation ability, but adults exhibited superior allocentric memory ability. Memory-guided navigation ability during scanning correlated with BOLD change between NAV/ARROWS in various regions, including a right frontal and right-anterior medial temporal lobe region. Age group and allocentric memory together explained significant variance in BOLD change in temporoparietal association cortex and the cerebellum, particularly in the left hemisphere. Consistent with developmental models, these findings relate maturation in the coding of spatial information to functional changes in a distributed, left-lateralized neural network.
doi_str_mv 10.1006/nimg.2001.0988
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_71441955</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1053811901909887</els_id><sourcerecordid>71441955</sourcerecordid><originalsourceid>FETCH-LOGICAL-c340t-aa1d66e5c4bd1351d4a50ade0953d3b514d3c0580901938fd980436d9e5bec503</originalsourceid><addsrcrecordid>eNp1kE1rGzEQhkVJaRK31x7DnnJbZ8aSbKk3E5I2kLpgt70KWZoNCvtVadfgf18tNuSU0wzDMy8zD2NfEeYIsLxrQ_MyXwDgHLRSH9gVgpallqvFxdRLXipEfcmuU3oFAI1CfWKXiCutFitxxTYbGmPn6UB11zfUDrYu1qknN6Siq4pdb4eQRxt7CC-57dpvxbr4G-Iw5umWbB2GY1H93D4Vu2H0x8_sY2XrRF_Odcb-PD78vv9RPv_6_nS_fi4dFzCU1qJfLkk6sffIJXphJVhP-Xbu-V6i8NyBVKABNVeV1woEX3pNck9OAp-x21NuH7t_I6XBNCE5qmvbUjcms0IhUEuZwfkJdLFLKVJl-hgaG48GwUwGzWTQTAbNZDAv3JyTx31D_g0_K8uAOgGU_zsEiia5QK0jH2LWZnwX3sv-DwbCfzw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>71441955</pqid></control><display><type>article</type><title>Neurodevelopmental Aspects of Spatial Navigation: A Virtual Reality fMRI Study</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><source>ProQuest Central UK/Ireland</source><creator>Pine, Daniel S. ; Grun, Joseph ; Maguire, Eleanor A. ; Burgess, Neil ; Zarahn, Eric ; Koda, Vivian ; Fyer, Abby ; Szeszko, Philip R. ; Bilder, Robert M.</creator><creatorcontrib>Pine, Daniel S. ; Grun, Joseph ; Maguire, Eleanor A. ; Burgess, Neil ; Zarahn, Eric ; Koda, Vivian ; Fyer, Abby ; Szeszko, Philip R. ; Bilder, Robert M.</creatorcontrib><description>Navigation in spatial contexts has been studied in diverse species, yielding insights into underlying neural mechanisms and their phylogenetic progression. Spatial navigation in humans is marked by age-related changes that may carry important implications for understanding cortical development. The emergence of “allocentric” processing, reflecting that ability to use viewer-independent spatial abstractions, represents an important developmental change. We used fMRI to map brain regions engaged during memory-guided navigation in a virtual reality environment in adolescents and adults. Blood oxygen level-dependent (BOLD) signal was monitored in eight adolescents and eight adults in a 1.5-T MRI scanner during three conditions: (1) memory-guided navigation (NAV); (2) arrow-guided navigation (ARROW); and (3) fixation (FIX). We quantified navigation ability during scanning and allocentric memory after scanning, based on subjects' ability to label a previously unseen, aerial view of the town. Adolescents and adults exhibited similar memory-guided navigation ability, but adults exhibited superior allocentric memory ability. Memory-guided navigation ability during scanning correlated with BOLD change between NAV/ARROWS in various regions, including a right frontal and right-anterior medial temporal lobe region. Age group and allocentric memory together explained significant variance in BOLD change in temporoparietal association cortex and the cerebellum, particularly in the left hemisphere. Consistent with developmental models, these findings relate maturation in the coding of spatial information to functional changes in a distributed, left-lateralized neural network.</description><identifier>ISSN: 1053-8119</identifier><identifier>EISSN: 1095-9572</identifier><identifier>DOI: 10.1006/nimg.2001.0988</identifier><identifier>PMID: 11798274</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>adolescence ; Adolescent ; Aging - physiology ; Brain - growth &amp; development ; Brain - physiology ; Brain Mapping - methods ; Child ; development ; Female ; fMRI ; Functional Laterality ; Humans ; Magnetic Resonance Imaging - methods ; Male ; Memory - physiology ; Motor Activity - physiology ; navigation ; neuroscience ; Organ Specificity ; Oxygen - blood ; User-Computer Interface</subject><ispartof>NeuroImage (Orlando, Fla.), 2002-02, Vol.15 (2), p.396-406</ispartof><rights>2002 Elsevier Science (USA)</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c340t-aa1d66e5c4bd1351d4a50ade0953d3b514d3c0580901938fd980436d9e5bec503</citedby><cites>FETCH-LOGICAL-c340t-aa1d66e5c4bd1351d4a50ade0953d3b514d3c0580901938fd980436d9e5bec503</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S1053811901909887$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,64363,65309</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/11798274$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Pine, Daniel S.</creatorcontrib><creatorcontrib>Grun, Joseph</creatorcontrib><creatorcontrib>Maguire, Eleanor A.</creatorcontrib><creatorcontrib>Burgess, Neil</creatorcontrib><creatorcontrib>Zarahn, Eric</creatorcontrib><creatorcontrib>Koda, Vivian</creatorcontrib><creatorcontrib>Fyer, Abby</creatorcontrib><creatorcontrib>Szeszko, Philip R.</creatorcontrib><creatorcontrib>Bilder, Robert M.</creatorcontrib><title>Neurodevelopmental Aspects of Spatial Navigation: A Virtual Reality fMRI Study</title><title>NeuroImage (Orlando, Fla.)</title><addtitle>Neuroimage</addtitle><description>Navigation in spatial contexts has been studied in diverse species, yielding insights into underlying neural mechanisms and their phylogenetic progression. Spatial navigation in humans is marked by age-related changes that may carry important implications for understanding cortical development. The emergence of “allocentric” processing, reflecting that ability to use viewer-independent spatial abstractions, represents an important developmental change. We used fMRI to map brain regions engaged during memory-guided navigation in a virtual reality environment in adolescents and adults. Blood oxygen level-dependent (BOLD) signal was monitored in eight adolescents and eight adults in a 1.5-T MRI scanner during three conditions: (1) memory-guided navigation (NAV); (2) arrow-guided navigation (ARROW); and (3) fixation (FIX). We quantified navigation ability during scanning and allocentric memory after scanning, based on subjects' ability to label a previously unseen, aerial view of the town. Adolescents and adults exhibited similar memory-guided navigation ability, but adults exhibited superior allocentric memory ability. Memory-guided navigation ability during scanning correlated with BOLD change between NAV/ARROWS in various regions, including a right frontal and right-anterior medial temporal lobe region. Age group and allocentric memory together explained significant variance in BOLD change in temporoparietal association cortex and the cerebellum, particularly in the left hemisphere. Consistent with developmental models, these findings relate maturation in the coding of spatial information to functional changes in a distributed, left-lateralized neural network.</description><subject>adolescence</subject><subject>Adolescent</subject><subject>Aging - physiology</subject><subject>Brain - growth &amp; development</subject><subject>Brain - physiology</subject><subject>Brain Mapping - methods</subject><subject>Child</subject><subject>development</subject><subject>Female</subject><subject>fMRI</subject><subject>Functional Laterality</subject><subject>Humans</subject><subject>Magnetic Resonance Imaging - methods</subject><subject>Male</subject><subject>Memory - physiology</subject><subject>Motor Activity - physiology</subject><subject>navigation</subject><subject>neuroscience</subject><subject>Organ Specificity</subject><subject>Oxygen - blood</subject><subject>User-Computer Interface</subject><issn>1053-8119</issn><issn>1095-9572</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kE1rGzEQhkVJaRK31x7DnnJbZ8aSbKk3E5I2kLpgt70KWZoNCvtVadfgf18tNuSU0wzDMy8zD2NfEeYIsLxrQ_MyXwDgHLRSH9gVgpallqvFxdRLXipEfcmuU3oFAI1CfWKXiCutFitxxTYbGmPn6UB11zfUDrYu1qknN6Siq4pdb4eQRxt7CC-57dpvxbr4G-Iw5umWbB2GY1H93D4Vu2H0x8_sY2XrRF_Odcb-PD78vv9RPv_6_nS_fi4dFzCU1qJfLkk6sffIJXphJVhP-Xbu-V6i8NyBVKABNVeV1woEX3pNck9OAp-x21NuH7t_I6XBNCE5qmvbUjcms0IhUEuZwfkJdLFLKVJl-hgaG48GwUwGzWTQTAbNZDAv3JyTx31D_g0_K8uAOgGU_zsEiia5QK0jH2LWZnwX3sv-DwbCfzw</recordid><startdate>20020201</startdate><enddate>20020201</enddate><creator>Pine, Daniel S.</creator><creator>Grun, Joseph</creator><creator>Maguire, Eleanor A.</creator><creator>Burgess, Neil</creator><creator>Zarahn, Eric</creator><creator>Koda, Vivian</creator><creator>Fyer, Abby</creator><creator>Szeszko, Philip R.</creator><creator>Bilder, Robert M.</creator><general>Elsevier Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20020201</creationdate><title>Neurodevelopmental Aspects of Spatial Navigation: A Virtual Reality fMRI Study</title><author>Pine, Daniel S. ; Grun, Joseph ; Maguire, Eleanor A. ; Burgess, Neil ; Zarahn, Eric ; Koda, Vivian ; Fyer, Abby ; Szeszko, Philip R. ; Bilder, Robert M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c340t-aa1d66e5c4bd1351d4a50ade0953d3b514d3c0580901938fd980436d9e5bec503</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>adolescence</topic><topic>Adolescent</topic><topic>Aging - physiology</topic><topic>Brain - growth &amp; development</topic><topic>Brain - physiology</topic><topic>Brain Mapping - methods</topic><topic>Child</topic><topic>development</topic><topic>Female</topic><topic>fMRI</topic><topic>Functional Laterality</topic><topic>Humans</topic><topic>Magnetic Resonance Imaging - methods</topic><topic>Male</topic><topic>Memory - physiology</topic><topic>Motor Activity - physiology</topic><topic>navigation</topic><topic>neuroscience</topic><topic>Organ Specificity</topic><topic>Oxygen - blood</topic><topic>User-Computer Interface</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pine, Daniel S.</creatorcontrib><creatorcontrib>Grun, Joseph</creatorcontrib><creatorcontrib>Maguire, Eleanor A.</creatorcontrib><creatorcontrib>Burgess, Neil</creatorcontrib><creatorcontrib>Zarahn, Eric</creatorcontrib><creatorcontrib>Koda, Vivian</creatorcontrib><creatorcontrib>Fyer, Abby</creatorcontrib><creatorcontrib>Szeszko, Philip R.</creatorcontrib><creatorcontrib>Bilder, Robert M.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>NeuroImage (Orlando, Fla.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pine, Daniel S.</au><au>Grun, Joseph</au><au>Maguire, Eleanor A.</au><au>Burgess, Neil</au><au>Zarahn, Eric</au><au>Koda, Vivian</au><au>Fyer, Abby</au><au>Szeszko, Philip R.</au><au>Bilder, Robert M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Neurodevelopmental Aspects of Spatial Navigation: A Virtual Reality fMRI Study</atitle><jtitle>NeuroImage (Orlando, Fla.)</jtitle><addtitle>Neuroimage</addtitle><date>2002-02-01</date><risdate>2002</risdate><volume>15</volume><issue>2</issue><spage>396</spage><epage>406</epage><pages>396-406</pages><issn>1053-8119</issn><eissn>1095-9572</eissn><abstract>Navigation in spatial contexts has been studied in diverse species, yielding insights into underlying neural mechanisms and their phylogenetic progression. Spatial navigation in humans is marked by age-related changes that may carry important implications for understanding cortical development. The emergence of “allocentric” processing, reflecting that ability to use viewer-independent spatial abstractions, represents an important developmental change. We used fMRI to map brain regions engaged during memory-guided navigation in a virtual reality environment in adolescents and adults. Blood oxygen level-dependent (BOLD) signal was monitored in eight adolescents and eight adults in a 1.5-T MRI scanner during three conditions: (1) memory-guided navigation (NAV); (2) arrow-guided navigation (ARROW); and (3) fixation (FIX). We quantified navigation ability during scanning and allocentric memory after scanning, based on subjects' ability to label a previously unseen, aerial view of the town. Adolescents and adults exhibited similar memory-guided navigation ability, but adults exhibited superior allocentric memory ability. Memory-guided navigation ability during scanning correlated with BOLD change between NAV/ARROWS in various regions, including a right frontal and right-anterior medial temporal lobe region. Age group and allocentric memory together explained significant variance in BOLD change in temporoparietal association cortex and the cerebellum, particularly in the left hemisphere. Consistent with developmental models, these findings relate maturation in the coding of spatial information to functional changes in a distributed, left-lateralized neural network.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>11798274</pmid><doi>10.1006/nimg.2001.0988</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1053-8119
ispartof NeuroImage (Orlando, Fla.), 2002-02, Vol.15 (2), p.396-406
issn 1053-8119
1095-9572
language eng
recordid cdi_proquest_miscellaneous_71441955
source MEDLINE; Elsevier ScienceDirect Journals; ProQuest Central UK/Ireland
subjects adolescence
Adolescent
Aging - physiology
Brain - growth & development
Brain - physiology
Brain Mapping - methods
Child
development
Female
fMRI
Functional Laterality
Humans
Magnetic Resonance Imaging - methods
Male
Memory - physiology
Motor Activity - physiology
navigation
neuroscience
Organ Specificity
Oxygen - blood
User-Computer Interface
title Neurodevelopmental Aspects of Spatial Navigation: A Virtual Reality fMRI Study
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T14%3A57%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Neurodevelopmental%20Aspects%20of%20Spatial%20Navigation:%20A%20Virtual%20Reality%20fMRI%20Study&rft.jtitle=NeuroImage%20(Orlando,%20Fla.)&rft.au=Pine,%20Daniel%20S.&rft.date=2002-02-01&rft.volume=15&rft.issue=2&rft.spage=396&rft.epage=406&rft.pages=396-406&rft.issn=1053-8119&rft.eissn=1095-9572&rft_id=info:doi/10.1006/nimg.2001.0988&rft_dat=%3Cproquest_cross%3E71441955%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=71441955&rft_id=info:pmid/11798274&rft_els_id=S1053811901909887&rfr_iscdi=true