Multiple imputation versus data enhancement for dealing with missing data in observational health care outcome analyses

The problem of missing data is frequently encountered in observational studies. We compared approaches to dealing with missing data. Three multiple imputation methods were compared with a method of enhancing a clinical database through merging with administrative data. The clinical database used for...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of clinical epidemiology 2002-02, Vol.55 (2), p.184-191
Hauptverfasser: Faris, Peter D, Ghali, William A, Brant, Rollin, Norris, Colleen M, Galbraith, P.Diane, Knudtson, Merril L
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 191
container_issue 2
container_start_page 184
container_title Journal of clinical epidemiology
container_volume 55
creator Faris, Peter D
Ghali, William A
Brant, Rollin
Norris, Colleen M
Galbraith, P.Diane
Knudtson, Merril L
description The problem of missing data is frequently encountered in observational studies. We compared approaches to dealing with missing data. Three multiple imputation methods were compared with a method of enhancing a clinical database through merging with administrative data. The clinical database used for comparison contained information collected from 6,065 cardiac care patients in 1995 in the province of Alberta, Canada. The effectiveness of the different strategies was evaluated using measures of discrimination and goodness of fit for the 1995 data. The strategies were further evaluated by examining how well the models predicted outcomes in data collected from patients in 1996. In general, the different methods produced similar results, with one of the multiple imputation methods demonstrating a slight advantage. It is concluded that the choice of missing data strategy should be guided by statistical expertise and data resources.
doi_str_mv 10.1016/S0895-4356(01)00433-4
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_71424886</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0895435601004334</els_id><sourcerecordid>71424886</sourcerecordid><originalsourceid>FETCH-LOGICAL-c443t-68b22e9e07f624a1dc955965167fac52b316e8cd8de38512a955959acd3b32d63</originalsourceid><addsrcrecordid>eNqFkMFu1DAQhi0EotuFRwD5AoJDwBPbiXOqUEUBqYgDcLYce8IaJfFiO1v17XF2V_TIaTSab2Z-fYS8APYOGDTvvzPVyUpw2bxh8JYxwXklHpENqFZVsqvhMdn8Qy7IZUq_GYOWtfIpuQBQrOOy3ZC7r8uY_X5E6qf9kk32YaYHjGlJ1JlsKM47M1uccM50CJE6NKOff9E7n3d08imtzZH0Mw19wng4HjEj3RW0QNZEpGHJNkxITRncJ0zPyJPBjAmfn-uW_Lz5-OP6c3X77dOX6w-3lRWC56pRfV1jh6wdmloYcLaTsmskNO1grKx7Dg0q65RDriTUZh3LzljHe167hm_J69PdfQx_FkxZl8wWx9HMGJakWxC1UGoF5Qm0MaQUcdD76CcT7zUwvRrXR-N61akZ6KPx0m3Jy_ODpZ_QPWydFRfg1RkwyZpxiEWnTw8cF1ICrNzVicOi4-Ax6mQ9FvXOR7RZu-D_E-Uv7wufaA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>71424886</pqid></control><display><type>article</type><title>Multiple imputation versus data enhancement for dealing with missing data in observational health care outcome analyses</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><creator>Faris, Peter D ; Ghali, William A ; Brant, Rollin ; Norris, Colleen M ; Galbraith, P.Diane ; Knudtson, Merril L</creator><creatorcontrib>Faris, Peter D ; Ghali, William A ; Brant, Rollin ; Norris, Colleen M ; Galbraith, P.Diane ; Knudtson, Merril L ; for the APPROACH Investigators ; APPROACH Investigators. Alberta Provincial Program for Outcome Assessment in Coronary Heart Disease</creatorcontrib><description>The problem of missing data is frequently encountered in observational studies. We compared approaches to dealing with missing data. Three multiple imputation methods were compared with a method of enhancing a clinical database through merging with administrative data. The clinical database used for comparison contained information collected from 6,065 cardiac care patients in 1995 in the province of Alberta, Canada. The effectiveness of the different strategies was evaluated using measures of discrimination and goodness of fit for the 1995 data. The strategies were further evaluated by examining how well the models predicted outcomes in data collected from patients in 1996. In general, the different methods produced similar results, with one of the multiple imputation methods demonstrating a slight advantage. It is concluded that the choice of missing data strategy should be guided by statistical expertise and data resources.</description><identifier>ISSN: 0895-4356</identifier><identifier>EISSN: 1878-5921</identifier><identifier>DOI: 10.1016/S0895-4356(01)00433-4</identifier><identifier>PMID: 11809357</identifier><language>eng</language><publisher>New York, NY: Elsevier Inc</publisher><subject>Administrative data ; Alberta - epidemiology ; Angiography ; Biological and medical sciences ; Cardiac Catheterization - statistics &amp; numerical data ; Cardiovascular ; Cardiovascular Diseases - epidemiology ; Clinical data ; Databases, Factual ; Epidemiologic Methods ; Epidemiology ; General aspects ; Humans ; Logistic Models ; Medical sciences ; Methodology ; Middle Aged ; Multiple imputation ; Predictive Value of Tests ; Public health. Hygiene ; Public health. Hygiene-occupational medicine ; Research Design - statistics &amp; numerical data</subject><ispartof>Journal of clinical epidemiology, 2002-02, Vol.55 (2), p.184-191</ispartof><rights>2002 Elsevier Science Inc.</rights><rights>2002 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c443t-68b22e9e07f624a1dc955965167fac52b316e8cd8de38512a955959acd3b32d63</citedby><cites>FETCH-LOGICAL-c443t-68b22e9e07f624a1dc955965167fac52b316e8cd8de38512a955959acd3b32d63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/S0895-4356(01)00433-4$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>315,781,785,3551,27929,27930,46000</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=13455117$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/11809357$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Faris, Peter D</creatorcontrib><creatorcontrib>Ghali, William A</creatorcontrib><creatorcontrib>Brant, Rollin</creatorcontrib><creatorcontrib>Norris, Colleen M</creatorcontrib><creatorcontrib>Galbraith, P.Diane</creatorcontrib><creatorcontrib>Knudtson, Merril L</creatorcontrib><creatorcontrib>for the APPROACH Investigators</creatorcontrib><creatorcontrib>APPROACH Investigators. Alberta Provincial Program for Outcome Assessment in Coronary Heart Disease</creatorcontrib><title>Multiple imputation versus data enhancement for dealing with missing data in observational health care outcome analyses</title><title>Journal of clinical epidemiology</title><addtitle>J Clin Epidemiol</addtitle><description>The problem of missing data is frequently encountered in observational studies. We compared approaches to dealing with missing data. Three multiple imputation methods were compared with a method of enhancing a clinical database through merging with administrative data. The clinical database used for comparison contained information collected from 6,065 cardiac care patients in 1995 in the province of Alberta, Canada. The effectiveness of the different strategies was evaluated using measures of discrimination and goodness of fit for the 1995 data. The strategies were further evaluated by examining how well the models predicted outcomes in data collected from patients in 1996. In general, the different methods produced similar results, with one of the multiple imputation methods demonstrating a slight advantage. It is concluded that the choice of missing data strategy should be guided by statistical expertise and data resources.</description><subject>Administrative data</subject><subject>Alberta - epidemiology</subject><subject>Angiography</subject><subject>Biological and medical sciences</subject><subject>Cardiac Catheterization - statistics &amp; numerical data</subject><subject>Cardiovascular</subject><subject>Cardiovascular Diseases - epidemiology</subject><subject>Clinical data</subject><subject>Databases, Factual</subject><subject>Epidemiologic Methods</subject><subject>Epidemiology</subject><subject>General aspects</subject><subject>Humans</subject><subject>Logistic Models</subject><subject>Medical sciences</subject><subject>Methodology</subject><subject>Middle Aged</subject><subject>Multiple imputation</subject><subject>Predictive Value of Tests</subject><subject>Public health. Hygiene</subject><subject>Public health. Hygiene-occupational medicine</subject><subject>Research Design - statistics &amp; numerical data</subject><issn>0895-4356</issn><issn>1878-5921</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkMFu1DAQhi0EotuFRwD5AoJDwBPbiXOqUEUBqYgDcLYce8IaJfFiO1v17XF2V_TIaTSab2Z-fYS8APYOGDTvvzPVyUpw2bxh8JYxwXklHpENqFZVsqvhMdn8Qy7IZUq_GYOWtfIpuQBQrOOy3ZC7r8uY_X5E6qf9kk32YaYHjGlJ1JlsKM47M1uccM50CJE6NKOff9E7n3d08imtzZH0Mw19wng4HjEj3RW0QNZEpGHJNkxITRncJ0zPyJPBjAmfn-uW_Lz5-OP6c3X77dOX6w-3lRWC56pRfV1jh6wdmloYcLaTsmskNO1grKx7Dg0q65RDriTUZh3LzljHe167hm_J69PdfQx_FkxZl8wWx9HMGJakWxC1UGoF5Qm0MaQUcdD76CcT7zUwvRrXR-N61akZ6KPx0m3Jy_ODpZ_QPWydFRfg1RkwyZpxiEWnTw8cF1ICrNzVicOi4-Ax6mQ9FvXOR7RZu-D_E-Uv7wufaA</recordid><startdate>20020201</startdate><enddate>20020201</enddate><creator>Faris, Peter D</creator><creator>Ghali, William A</creator><creator>Brant, Rollin</creator><creator>Norris, Colleen M</creator><creator>Galbraith, P.Diane</creator><creator>Knudtson, Merril L</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20020201</creationdate><title>Multiple imputation versus data enhancement for dealing with missing data in observational health care outcome analyses</title><author>Faris, Peter D ; Ghali, William A ; Brant, Rollin ; Norris, Colleen M ; Galbraith, P.Diane ; Knudtson, Merril L</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c443t-68b22e9e07f624a1dc955965167fac52b316e8cd8de38512a955959acd3b32d63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Administrative data</topic><topic>Alberta - epidemiology</topic><topic>Angiography</topic><topic>Biological and medical sciences</topic><topic>Cardiac Catheterization - statistics &amp; numerical data</topic><topic>Cardiovascular</topic><topic>Cardiovascular Diseases - epidemiology</topic><topic>Clinical data</topic><topic>Databases, Factual</topic><topic>Epidemiologic Methods</topic><topic>Epidemiology</topic><topic>General aspects</topic><topic>Humans</topic><topic>Logistic Models</topic><topic>Medical sciences</topic><topic>Methodology</topic><topic>Middle Aged</topic><topic>Multiple imputation</topic><topic>Predictive Value of Tests</topic><topic>Public health. Hygiene</topic><topic>Public health. Hygiene-occupational medicine</topic><topic>Research Design - statistics &amp; numerical data</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Faris, Peter D</creatorcontrib><creatorcontrib>Ghali, William A</creatorcontrib><creatorcontrib>Brant, Rollin</creatorcontrib><creatorcontrib>Norris, Colleen M</creatorcontrib><creatorcontrib>Galbraith, P.Diane</creatorcontrib><creatorcontrib>Knudtson, Merril L</creatorcontrib><creatorcontrib>for the APPROACH Investigators</creatorcontrib><creatorcontrib>APPROACH Investigators. Alberta Provincial Program for Outcome Assessment in Coronary Heart Disease</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of clinical epidemiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Faris, Peter D</au><au>Ghali, William A</au><au>Brant, Rollin</au><au>Norris, Colleen M</au><au>Galbraith, P.Diane</au><au>Knudtson, Merril L</au><aucorp>for the APPROACH Investigators</aucorp><aucorp>APPROACH Investigators. Alberta Provincial Program for Outcome Assessment in Coronary Heart Disease</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multiple imputation versus data enhancement for dealing with missing data in observational health care outcome analyses</atitle><jtitle>Journal of clinical epidemiology</jtitle><addtitle>J Clin Epidemiol</addtitle><date>2002-02-01</date><risdate>2002</risdate><volume>55</volume><issue>2</issue><spage>184</spage><epage>191</epage><pages>184-191</pages><issn>0895-4356</issn><eissn>1878-5921</eissn><abstract>The problem of missing data is frequently encountered in observational studies. We compared approaches to dealing with missing data. Three multiple imputation methods were compared with a method of enhancing a clinical database through merging with administrative data. The clinical database used for comparison contained information collected from 6,065 cardiac care patients in 1995 in the province of Alberta, Canada. The effectiveness of the different strategies was evaluated using measures of discrimination and goodness of fit for the 1995 data. The strategies were further evaluated by examining how well the models predicted outcomes in data collected from patients in 1996. In general, the different methods produced similar results, with one of the multiple imputation methods demonstrating a slight advantage. It is concluded that the choice of missing data strategy should be guided by statistical expertise and data resources.</abstract><cop>New York, NY</cop><pub>Elsevier Inc</pub><pmid>11809357</pmid><doi>10.1016/S0895-4356(01)00433-4</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0895-4356
ispartof Journal of clinical epidemiology, 2002-02, Vol.55 (2), p.184-191
issn 0895-4356
1878-5921
language eng
recordid cdi_proquest_miscellaneous_71424886
source MEDLINE; Elsevier ScienceDirect Journals Complete
subjects Administrative data
Alberta - epidemiology
Angiography
Biological and medical sciences
Cardiac Catheterization - statistics & numerical data
Cardiovascular
Cardiovascular Diseases - epidemiology
Clinical data
Databases, Factual
Epidemiologic Methods
Epidemiology
General aspects
Humans
Logistic Models
Medical sciences
Methodology
Middle Aged
Multiple imputation
Predictive Value of Tests
Public health. Hygiene
Public health. Hygiene-occupational medicine
Research Design - statistics & numerical data
title Multiple imputation versus data enhancement for dealing with missing data in observational health care outcome analyses
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-11T13%3A45%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multiple%20imputation%20versus%20data%20enhancement%20for%20dealing%20with%20missing%20data%20in%20observational%20health%20care%20outcome%20analyses&rft.jtitle=Journal%20of%20clinical%20epidemiology&rft.au=Faris,%20Peter%20D&rft.aucorp=for%20the%20APPROACH%20Investigators&rft.date=2002-02-01&rft.volume=55&rft.issue=2&rft.spage=184&rft.epage=191&rft.pages=184-191&rft.issn=0895-4356&rft.eissn=1878-5921&rft_id=info:doi/10.1016/S0895-4356(01)00433-4&rft_dat=%3Cproquest_cross%3E71424886%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=71424886&rft_id=info:pmid/11809357&rft_els_id=S0895435601004334&rfr_iscdi=true