Design and Characterization of Immobilized Enzymes in Microfluidic Systems

Herein we report the fabrication, characterization, and use of total analytical microsystems containing surface-immobilized enzymes. Streptavidin-conjugated alkaline phosphatase was linked to biotinylated phospholipid bilayers coated inside poly(dimethylsiloxane) microchannels and borosilicate micro...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Analytical chemistry (Washington) 2002-01, Vol.74 (2), p.379-385
Hauptverfasser: Mao, Hanbin, Yang, Tinglu, Cremer, Paul S
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 385
container_issue 2
container_start_page 379
container_title Analytical chemistry (Washington)
container_volume 74
creator Mao, Hanbin
Yang, Tinglu
Cremer, Paul S
description Herein we report the fabrication, characterization, and use of total analytical microsystems containing surface-immobilized enzymes. Streptavidin-conjugated alkaline phosphatase was linked to biotinylated phospholipid bilayers coated inside poly(dimethylsiloxane) microchannels and borosilicate microcapillary tubes. Rapid determination of enzyme kinetics at many different substrate concentrations was made possible by carrying out laminar flow-controlled dilution on-chip. This allowed Lineweaver−Burk analysis to be performed from a single experiment with all the data collected simultaneously. The results revealed an enzyme turnover number of 51.1 ± 3.2 s-1 for this heterogeneous system. Furthermore, the same enzyme immobilization strategy was extended to demonstrate that multiple chemical reactions could be performed in sequence by immobilizing various enzymes in series. Specifically, the presence of glucose was detected by two coupled steps employing immobilized avidinD-conjugated glucose oxidase and streptavidin-conjugated horseradish peroxidase.
doi_str_mv 10.1021/ac010822u
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_71419886</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>71419886</sourcerecordid><originalsourceid>FETCH-LOGICAL-a443t-892d57028139bbccc7901c2d71d19d5c347082d06a518a5dd60aff217a4e683a3</originalsourceid><addsrcrecordid>eNpl0F1rFDEUBuAgFrutXvgHZBAUvBg9J5mZZC7LttsPtih0Be_C2SSjqfNRkxlw99c3sksX7FUu8vBy3pextwifETh-IQMIivPpBZthySGvlOIv2QwARM4lwDE7ifEeABGwesWOERVigXzGbs5d9D_7jHqbzX9RIDO64Lc0-qHPhia77rph7Vu_dTa76LebzsXM99mtN2Fo2slbb7K7TRxdF1-zo4ba6N7s31P2fXGxml_ly6-X1_OzZU5FIcZc1dyWErhCUa_XxhhZAxpuJVqsbWlEIVMXCxWVqKi0tgJqGo6SClcpQeKUfdzlPoThz-TiqDsfjWtb6t0wRS1Ts1qpKsH3_8H7YQp9uk2nOFUhyDqhTzuUCsUYXKMfgu8obDSC_reuflo32Xf7wGndOXuQ-zkT-LAHFA21TaDe-HhwohDpsDK5fOd8Wu7v0z-F37qSQpZ69e1O_zhfLuTlYqVvD7lk4qHE8wMfAeh7mzQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>217861079</pqid></control><display><type>article</type><title>Design and Characterization of Immobilized Enzymes in Microfluidic Systems</title><source>MEDLINE</source><source>American Chemical Society Journals</source><creator>Mao, Hanbin ; Yang, Tinglu ; Cremer, Paul S</creator><creatorcontrib>Mao, Hanbin ; Yang, Tinglu ; Cremer, Paul S</creatorcontrib><description>Herein we report the fabrication, characterization, and use of total analytical microsystems containing surface-immobilized enzymes. Streptavidin-conjugated alkaline phosphatase was linked to biotinylated phospholipid bilayers coated inside poly(dimethylsiloxane) microchannels and borosilicate microcapillary tubes. Rapid determination of enzyme kinetics at many different substrate concentrations was made possible by carrying out laminar flow-controlled dilution on-chip. This allowed Lineweaver−Burk analysis to be performed from a single experiment with all the data collected simultaneously. The results revealed an enzyme turnover number of 51.1 ± 3.2 s-1 for this heterogeneous system. Furthermore, the same enzyme immobilization strategy was extended to demonstrate that multiple chemical reactions could be performed in sequence by immobilizing various enzymes in series. Specifically, the presence of glucose was detected by two coupled steps employing immobilized avidinD-conjugated glucose oxidase and streptavidin-conjugated horseradish peroxidase.</description><identifier>ISSN: 0003-2700</identifier><identifier>EISSN: 1520-6882</identifier><identifier>DOI: 10.1021/ac010822u</identifier><identifier>PMID: 11811412</identifier><identifier>CODEN: ANCHAM</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>Bacterial Proteins ; Biological and medical sciences ; Biosensing Techniques - methods ; Enzymes ; Enzymes, Immobilized ; Equipment Design ; Fluids ; Fundamental and applied biological sciences. Psychology ; Glucose ; Glucose - analysis ; Glucose Oxidase - metabolism ; Horseradish Peroxidase ; Lipid Bilayers ; Microchemistry ; Molecular and cellular biology</subject><ispartof>Analytical chemistry (Washington), 2002-01, Vol.74 (2), p.379-385</ispartof><rights>Copyright © 2002 American Chemical Society</rights><rights>2002 INIST-CNRS</rights><rights>Copyright American Chemical Society Jan 15, 2002</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a443t-892d57028139bbccc7901c2d71d19d5c347082d06a518a5dd60aff217a4e683a3</citedby><cites>FETCH-LOGICAL-a443t-892d57028139bbccc7901c2d71d19d5c347082d06a518a5dd60aff217a4e683a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/ac010822u$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/ac010822u$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=13438865$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/11811412$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Mao, Hanbin</creatorcontrib><creatorcontrib>Yang, Tinglu</creatorcontrib><creatorcontrib>Cremer, Paul S</creatorcontrib><title>Design and Characterization of Immobilized Enzymes in Microfluidic Systems</title><title>Analytical chemistry (Washington)</title><addtitle>Anal. Chem</addtitle><description>Herein we report the fabrication, characterization, and use of total analytical microsystems containing surface-immobilized enzymes. Streptavidin-conjugated alkaline phosphatase was linked to biotinylated phospholipid bilayers coated inside poly(dimethylsiloxane) microchannels and borosilicate microcapillary tubes. Rapid determination of enzyme kinetics at many different substrate concentrations was made possible by carrying out laminar flow-controlled dilution on-chip. This allowed Lineweaver−Burk analysis to be performed from a single experiment with all the data collected simultaneously. The results revealed an enzyme turnover number of 51.1 ± 3.2 s-1 for this heterogeneous system. Furthermore, the same enzyme immobilization strategy was extended to demonstrate that multiple chemical reactions could be performed in sequence by immobilizing various enzymes in series. Specifically, the presence of glucose was detected by two coupled steps employing immobilized avidinD-conjugated glucose oxidase and streptavidin-conjugated horseradish peroxidase.</description><subject>Bacterial Proteins</subject><subject>Biological and medical sciences</subject><subject>Biosensing Techniques - methods</subject><subject>Enzymes</subject><subject>Enzymes, Immobilized</subject><subject>Equipment Design</subject><subject>Fluids</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Glucose</subject><subject>Glucose - analysis</subject><subject>Glucose Oxidase - metabolism</subject><subject>Horseradish Peroxidase</subject><subject>Lipid Bilayers</subject><subject>Microchemistry</subject><subject>Molecular and cellular biology</subject><issn>0003-2700</issn><issn>1520-6882</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpl0F1rFDEUBuAgFrutXvgHZBAUvBg9J5mZZC7LttsPtih0Be_C2SSjqfNRkxlw99c3sksX7FUu8vBy3pextwifETh-IQMIivPpBZthySGvlOIv2QwARM4lwDE7ifEeABGwesWOERVigXzGbs5d9D_7jHqbzX9RIDO64Lc0-qHPhia77rph7Vu_dTa76LebzsXM99mtN2Fo2slbb7K7TRxdF1-zo4ba6N7s31P2fXGxml_ly6-X1_OzZU5FIcZc1dyWErhCUa_XxhhZAxpuJVqsbWlEIVMXCxWVqKi0tgJqGo6SClcpQeKUfdzlPoThz-TiqDsfjWtb6t0wRS1Ts1qpKsH3_8H7YQp9uk2nOFUhyDqhTzuUCsUYXKMfgu8obDSC_reuflo32Xf7wGndOXuQ-zkT-LAHFA21TaDe-HhwohDpsDK5fOd8Wu7v0z-F37qSQpZ69e1O_zhfLuTlYqVvD7lk4qHE8wMfAeh7mzQ</recordid><startdate>20020115</startdate><enddate>20020115</enddate><creator>Mao, Hanbin</creator><creator>Yang, Tinglu</creator><creator>Cremer, Paul S</creator><general>American Chemical Society</general><scope>BSCLL</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TM</scope><scope>7U5</scope><scope>7U7</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>20020115</creationdate><title>Design and Characterization of Immobilized Enzymes in Microfluidic Systems</title><author>Mao, Hanbin ; Yang, Tinglu ; Cremer, Paul S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a443t-892d57028139bbccc7901c2d71d19d5c347082d06a518a5dd60aff217a4e683a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Bacterial Proteins</topic><topic>Biological and medical sciences</topic><topic>Biosensing Techniques - methods</topic><topic>Enzymes</topic><topic>Enzymes, Immobilized</topic><topic>Equipment Design</topic><topic>Fluids</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Glucose</topic><topic>Glucose - analysis</topic><topic>Glucose Oxidase - metabolism</topic><topic>Horseradish Peroxidase</topic><topic>Lipid Bilayers</topic><topic>Microchemistry</topic><topic>Molecular and cellular biology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mao, Hanbin</creatorcontrib><creatorcontrib>Yang, Tinglu</creatorcontrib><creatorcontrib>Cremer, Paul S</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Analytical chemistry (Washington)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mao, Hanbin</au><au>Yang, Tinglu</au><au>Cremer, Paul S</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Design and Characterization of Immobilized Enzymes in Microfluidic Systems</atitle><jtitle>Analytical chemistry (Washington)</jtitle><addtitle>Anal. Chem</addtitle><date>2002-01-15</date><risdate>2002</risdate><volume>74</volume><issue>2</issue><spage>379</spage><epage>385</epage><pages>379-385</pages><issn>0003-2700</issn><eissn>1520-6882</eissn><coden>ANCHAM</coden><abstract>Herein we report the fabrication, characterization, and use of total analytical microsystems containing surface-immobilized enzymes. Streptavidin-conjugated alkaline phosphatase was linked to biotinylated phospholipid bilayers coated inside poly(dimethylsiloxane) microchannels and borosilicate microcapillary tubes. Rapid determination of enzyme kinetics at many different substrate concentrations was made possible by carrying out laminar flow-controlled dilution on-chip. This allowed Lineweaver−Burk analysis to be performed from a single experiment with all the data collected simultaneously. The results revealed an enzyme turnover number of 51.1 ± 3.2 s-1 for this heterogeneous system. Furthermore, the same enzyme immobilization strategy was extended to demonstrate that multiple chemical reactions could be performed in sequence by immobilizing various enzymes in series. Specifically, the presence of glucose was detected by two coupled steps employing immobilized avidinD-conjugated glucose oxidase and streptavidin-conjugated horseradish peroxidase.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><pmid>11811412</pmid><doi>10.1021/ac010822u</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0003-2700
ispartof Analytical chemistry (Washington), 2002-01, Vol.74 (2), p.379-385
issn 0003-2700
1520-6882
language eng
recordid cdi_proquest_miscellaneous_71419886
source MEDLINE; American Chemical Society Journals
subjects Bacterial Proteins
Biological and medical sciences
Biosensing Techniques - methods
Enzymes
Enzymes, Immobilized
Equipment Design
Fluids
Fundamental and applied biological sciences. Psychology
Glucose
Glucose - analysis
Glucose Oxidase - metabolism
Horseradish Peroxidase
Lipid Bilayers
Microchemistry
Molecular and cellular biology
title Design and Characterization of Immobilized Enzymes in Microfluidic Systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T17%3A44%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Design%20and%20Characterization%20of%20Immobilized%20Enzymes%20in%20Microfluidic%20Systems&rft.jtitle=Analytical%20chemistry%20(Washington)&rft.au=Mao,%20Hanbin&rft.date=2002-01-15&rft.volume=74&rft.issue=2&rft.spage=379&rft.epage=385&rft.pages=379-385&rft.issn=0003-2700&rft.eissn=1520-6882&rft.coden=ANCHAM&rft_id=info:doi/10.1021/ac010822u&rft_dat=%3Cproquest_cross%3E71419886%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=217861079&rft_id=info:pmid/11811412&rfr_iscdi=true