Body oxygen stores, aerobic dive limits and diving behaviour of the star-nosed mole (Condylura cristata) and comparisons with non-aquatic talpids

The dive performance, oxygen storage capacity and partitioning of body oxygen reserves of one of the world's smallest mammalian divers, the star-nosed mole Condylura cristata, were investigated. On the basis of 722 voluntary dives recorded from 18 captive star-nosed moles, the mean dive duratio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of experimental biology 2002-01, Vol.205 (Pt 1), p.45-54
Hauptverfasser: McIntyre, Ian W, Campbell, Kevin L, MacArthur, Robert A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The dive performance, oxygen storage capacity and partitioning of body oxygen reserves of one of the world's smallest mammalian divers, the star-nosed mole Condylura cristata, were investigated. On the basis of 722 voluntary dives recorded from 18 captive star-nosed moles, the mean dive duration (9.2+/-0.2 s; mean +/- S.E.M.) and maximum recorded dive time (47 s) of this insectivore were comparable with those of several substantially larger semi-aquatic endotherms. Total body O(2) stores of adult star-nosed moles (34.0 ml kg(-1)) were 16.4 % higher than for similarly sized, strictly fossorial coast moles Scapanus orarius (29.2 ml kg(-1)), with the greatest differences observed in lung and muscle O(2) storage capacity. The mean lung volume of C. cristata (8.09 ml 100 g(-1)) was 1.81 times the predicted allometric value and exceeded that of coast moles by 65.4 % (P=0.0001). The overall mean myoglobin (Mb) concentration of skeletal muscles of adult star-nosed moles (13.57+/-0.40 mg g(-1) wet tissue, N=7) was 19.5 % higher than for coast moles (11.36+/-0.34 mg g(-1) wet tissue, N=10; P=0.0008) and 54.2 % higher than for American shrew-moles Neurotrichus gibbsii (8.8 mg g(-1) wet tissue; N=2). The mean skeletal muscle Mb content of adult star-nosed moles was 91.1 % higher than for juveniles of this species (P
ISSN:0022-0949
1477-9145
DOI:10.1242/jeb.205.1.45