Electrochemistry of nano-scale bacterial surface protein layers on gold
The mechanism of the recrystallization of nano-scale bacterial surface protein layers (S-layers) on solid substrates is of fundamental interest in the understanding and engineering of biomembranes and e.g. biosensors. In this context, the influence of the charging state of the substrate had to be cl...
Gespeichert in:
Veröffentlicht in: | Bioelectrochemistry (Amsterdam, Netherlands) Netherlands), 2003-10, Vol.61 (1), p.1-8 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 8 |
---|---|
container_issue | 1 |
container_start_page | 1 |
container_title | Bioelectrochemistry (Amsterdam, Netherlands) |
container_volume | 61 |
creator | Handrea, Marlene Sahre, Mario Neubauer, Angela Sleytr, Uwe B Kautek, Wolfgang |
description | The mechanism of the recrystallization of nano-scale bacterial surface protein layers (S-layers) on solid substrates is of fundamental interest in the understanding and engineering of biomembranes and e.g. biosensors. In this context, the influence of the charging state of the substrate had to be clarified. Therefore, the electrochemical behaviour of the S-layers on gold electrodes has been investigated by in-situ electrochemical quartz microbalance (EQMB) measurements, scanning force microscopy (SFM) and small-spot X-ray photoelectron spectroscopy (SS-XPS) of potentiostatically emersed substrates. It was shown that the negatively charged bonding sites of the S-layer units (e.g. carboxylates) can bond with positively charged Au surface atoms in the positively charged electrochemical double layer region positive of the point of zero charge (∼−0.8 V vs. saturated mercury-mercurous sulphate electrode). Surface conditions in other potential regions decelerated the recrystallization and fixation of S-layers. Time-resolved in-situ and ex-situ measurements demonstrated that two-dimensional S-layer crystal formation on gold electrodes can occur within few minutes in contrast to hours common in self-assembled monolayer (SAM) generation. These results proved that the recrystallization and fixation of 2D-crystalline S-layers on an electronic conductor can be influenced and controlled by direct electrochemical manipulation. |
doi_str_mv | 10.1016/S1567-5394(03)00047-1 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_71417778</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1567539403000471</els_id><sourcerecordid>71417778</sourcerecordid><originalsourceid>FETCH-LOGICAL-c361t-a5b9c3f82b7bfad2fcadd09b89bb436e9e42e1f2c4f313d2f76514506e438023</originalsourceid><addsrcrecordid>eNqFkDtPwzAQgC0EolD4CSBPCIaAHb-SCaGqFKRKDHRgsxznDEFpXOwEqf8e94EYme6k--71IXRByS0lVN69UiFVJljJrwm7IYRwldEDdEILVWRC5m-HKf9FRug0xs8EFVSJYzSiXPK8JPwEzaYt2D54-wHLJvZhjb3Dnel8Fq1pAVfG9hAa0-I4BGcs4FXwPTQdbs0aQsS-w---rc_QkTNthPN9HKPF43QxecrmL7PnycM8s0zSPjOiKi1zRV6pypk6d9bUNSmroqwqziSUwHOgLrfcMcpSXUlBuSASOCtIzsboajc2XfE1QOx1utpC25oO_BC1opwqpYoEih1og48xgNOr0CxNWGtK9Eag3grUGzuaML0VqGnqu9wvGKol1H9de2MJuN8BkL78biDoaBvoLNRNSCZ17Zt_VvwA-keAsQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>71417778</pqid></control><display><type>article</type><title>Electrochemistry of nano-scale bacterial surface protein layers on gold</title><source>MEDLINE</source><source>Access via ScienceDirect (Elsevier)</source><creator>Handrea, Marlene ; Sahre, Mario ; Neubauer, Angela ; Sleytr, Uwe B ; Kautek, Wolfgang</creator><creatorcontrib>Handrea, Marlene ; Sahre, Mario ; Neubauer, Angela ; Sleytr, Uwe B ; Kautek, Wolfgang</creatorcontrib><description>The mechanism of the recrystallization of nano-scale bacterial surface protein layers (S-layers) on solid substrates is of fundamental interest in the understanding and engineering of biomembranes and e.g. biosensors. In this context, the influence of the charging state of the substrate had to be clarified. Therefore, the electrochemical behaviour of the S-layers on gold electrodes has been investigated by in-situ electrochemical quartz microbalance (EQMB) measurements, scanning force microscopy (SFM) and small-spot X-ray photoelectron spectroscopy (SS-XPS) of potentiostatically emersed substrates. It was shown that the negatively charged bonding sites of the S-layer units (e.g. carboxylates) can bond with positively charged Au surface atoms in the positively charged electrochemical double layer region positive of the point of zero charge (∼−0.8 V vs. saturated mercury-mercurous sulphate electrode). Surface conditions in other potential regions decelerated the recrystallization and fixation of S-layers. Time-resolved in-situ and ex-situ measurements demonstrated that two-dimensional S-layer crystal formation on gold electrodes can occur within few minutes in contrast to hours common in self-assembled monolayer (SAM) generation. These results proved that the recrystallization and fixation of 2D-crystalline S-layers on an electronic conductor can be influenced and controlled by direct electrochemical manipulation.</description><identifier>ISSN: 1567-5394</identifier><identifier>EISSN: 1878-562X</identifier><identifier>DOI: 10.1016/S1567-5394(03)00047-1</identifier><identifier>PMID: 14642904</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>Bacterial Outer Membrane Proteins - chemistry ; Bacterial Outer Membrane Proteins - metabolism ; Biosensing Techniques - methods ; Cell Membrane - chemistry ; Cell Membrane - metabolism ; Crystallization ; Electrochemical quartz microbalance ; Electrochemistry ; Electrodes ; Electron Probe Microanalysis ; Gold ; Gold - chemistry ; Microscopy, Electron, Scanning ; Nanotechnology ; Quartz ; S-layers crystallization ; Scanning force microscopy ; XPS</subject><ispartof>Bioelectrochemistry (Amsterdam, Netherlands), 2003-10, Vol.61 (1), p.1-8</ispartof><rights>2003</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c361t-a5b9c3f82b7bfad2fcadd09b89bb436e9e42e1f2c4f313d2f76514506e438023</citedby><cites>FETCH-LOGICAL-c361t-a5b9c3f82b7bfad2fcadd09b89bb436e9e42e1f2c4f313d2f76514506e438023</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/S1567-5394(03)00047-1$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/14642904$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Handrea, Marlene</creatorcontrib><creatorcontrib>Sahre, Mario</creatorcontrib><creatorcontrib>Neubauer, Angela</creatorcontrib><creatorcontrib>Sleytr, Uwe B</creatorcontrib><creatorcontrib>Kautek, Wolfgang</creatorcontrib><title>Electrochemistry of nano-scale bacterial surface protein layers on gold</title><title>Bioelectrochemistry (Amsterdam, Netherlands)</title><addtitle>Bioelectrochemistry</addtitle><description>The mechanism of the recrystallization of nano-scale bacterial surface protein layers (S-layers) on solid substrates is of fundamental interest in the understanding and engineering of biomembranes and e.g. biosensors. In this context, the influence of the charging state of the substrate had to be clarified. Therefore, the electrochemical behaviour of the S-layers on gold electrodes has been investigated by in-situ electrochemical quartz microbalance (EQMB) measurements, scanning force microscopy (SFM) and small-spot X-ray photoelectron spectroscopy (SS-XPS) of potentiostatically emersed substrates. It was shown that the negatively charged bonding sites of the S-layer units (e.g. carboxylates) can bond with positively charged Au surface atoms in the positively charged electrochemical double layer region positive of the point of zero charge (∼−0.8 V vs. saturated mercury-mercurous sulphate electrode). Surface conditions in other potential regions decelerated the recrystallization and fixation of S-layers. Time-resolved in-situ and ex-situ measurements demonstrated that two-dimensional S-layer crystal formation on gold electrodes can occur within few minutes in contrast to hours common in self-assembled monolayer (SAM) generation. These results proved that the recrystallization and fixation of 2D-crystalline S-layers on an electronic conductor can be influenced and controlled by direct electrochemical manipulation.</description><subject>Bacterial Outer Membrane Proteins - chemistry</subject><subject>Bacterial Outer Membrane Proteins - metabolism</subject><subject>Biosensing Techniques - methods</subject><subject>Cell Membrane - chemistry</subject><subject>Cell Membrane - metabolism</subject><subject>Crystallization</subject><subject>Electrochemical quartz microbalance</subject><subject>Electrochemistry</subject><subject>Electrodes</subject><subject>Electron Probe Microanalysis</subject><subject>Gold</subject><subject>Gold - chemistry</subject><subject>Microscopy, Electron, Scanning</subject><subject>Nanotechnology</subject><subject>Quartz</subject><subject>S-layers crystallization</subject><subject>Scanning force microscopy</subject><subject>XPS</subject><issn>1567-5394</issn><issn>1878-562X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkDtPwzAQgC0EolD4CSBPCIaAHb-SCaGqFKRKDHRgsxznDEFpXOwEqf8e94EYme6k--71IXRByS0lVN69UiFVJljJrwm7IYRwldEDdEILVWRC5m-HKf9FRug0xs8EFVSJYzSiXPK8JPwEzaYt2D54-wHLJvZhjb3Dnel8Fq1pAVfG9hAa0-I4BGcs4FXwPTQdbs0aQsS-w---rc_QkTNthPN9HKPF43QxecrmL7PnycM8s0zSPjOiKi1zRV6pypk6d9bUNSmroqwqziSUwHOgLrfcMcpSXUlBuSASOCtIzsboajc2XfE1QOx1utpC25oO_BC1opwqpYoEih1og48xgNOr0CxNWGtK9Eag3grUGzuaML0VqGnqu9wvGKol1H9de2MJuN8BkL78biDoaBvoLNRNSCZ17Zt_VvwA-keAsQ</recordid><startdate>20031001</startdate><enddate>20031001</enddate><creator>Handrea, Marlene</creator><creator>Sahre, Mario</creator><creator>Neubauer, Angela</creator><creator>Sleytr, Uwe B</creator><creator>Kautek, Wolfgang</creator><general>Elsevier B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20031001</creationdate><title>Electrochemistry of nano-scale bacterial surface protein layers on gold</title><author>Handrea, Marlene ; Sahre, Mario ; Neubauer, Angela ; Sleytr, Uwe B ; Kautek, Wolfgang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c361t-a5b9c3f82b7bfad2fcadd09b89bb436e9e42e1f2c4f313d2f76514506e438023</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Bacterial Outer Membrane Proteins - chemistry</topic><topic>Bacterial Outer Membrane Proteins - metabolism</topic><topic>Biosensing Techniques - methods</topic><topic>Cell Membrane - chemistry</topic><topic>Cell Membrane - metabolism</topic><topic>Crystallization</topic><topic>Electrochemical quartz microbalance</topic><topic>Electrochemistry</topic><topic>Electrodes</topic><topic>Electron Probe Microanalysis</topic><topic>Gold</topic><topic>Gold - chemistry</topic><topic>Microscopy, Electron, Scanning</topic><topic>Nanotechnology</topic><topic>Quartz</topic><topic>S-layers crystallization</topic><topic>Scanning force microscopy</topic><topic>XPS</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Handrea, Marlene</creatorcontrib><creatorcontrib>Sahre, Mario</creatorcontrib><creatorcontrib>Neubauer, Angela</creatorcontrib><creatorcontrib>Sleytr, Uwe B</creatorcontrib><creatorcontrib>Kautek, Wolfgang</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Bioelectrochemistry (Amsterdam, Netherlands)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Handrea, Marlene</au><au>Sahre, Mario</au><au>Neubauer, Angela</au><au>Sleytr, Uwe B</au><au>Kautek, Wolfgang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electrochemistry of nano-scale bacterial surface protein layers on gold</atitle><jtitle>Bioelectrochemistry (Amsterdam, Netherlands)</jtitle><addtitle>Bioelectrochemistry</addtitle><date>2003-10-01</date><risdate>2003</risdate><volume>61</volume><issue>1</issue><spage>1</spage><epage>8</epage><pages>1-8</pages><issn>1567-5394</issn><eissn>1878-562X</eissn><abstract>The mechanism of the recrystallization of nano-scale bacterial surface protein layers (S-layers) on solid substrates is of fundamental interest in the understanding and engineering of biomembranes and e.g. biosensors. In this context, the influence of the charging state of the substrate had to be clarified. Therefore, the electrochemical behaviour of the S-layers on gold electrodes has been investigated by in-situ electrochemical quartz microbalance (EQMB) measurements, scanning force microscopy (SFM) and small-spot X-ray photoelectron spectroscopy (SS-XPS) of potentiostatically emersed substrates. It was shown that the negatively charged bonding sites of the S-layer units (e.g. carboxylates) can bond with positively charged Au surface atoms in the positively charged electrochemical double layer region positive of the point of zero charge (∼−0.8 V vs. saturated mercury-mercurous sulphate electrode). Surface conditions in other potential regions decelerated the recrystallization and fixation of S-layers. Time-resolved in-situ and ex-situ measurements demonstrated that two-dimensional S-layer crystal formation on gold electrodes can occur within few minutes in contrast to hours common in self-assembled monolayer (SAM) generation. These results proved that the recrystallization and fixation of 2D-crystalline S-layers on an electronic conductor can be influenced and controlled by direct electrochemical manipulation.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>14642904</pmid><doi>10.1016/S1567-5394(03)00047-1</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1567-5394 |
ispartof | Bioelectrochemistry (Amsterdam, Netherlands), 2003-10, Vol.61 (1), p.1-8 |
issn | 1567-5394 1878-562X |
language | eng |
recordid | cdi_proquest_miscellaneous_71417778 |
source | MEDLINE; Access via ScienceDirect (Elsevier) |
subjects | Bacterial Outer Membrane Proteins - chemistry Bacterial Outer Membrane Proteins - metabolism Biosensing Techniques - methods Cell Membrane - chemistry Cell Membrane - metabolism Crystallization Electrochemical quartz microbalance Electrochemistry Electrodes Electron Probe Microanalysis Gold Gold - chemistry Microscopy, Electron, Scanning Nanotechnology Quartz S-layers crystallization Scanning force microscopy XPS |
title | Electrochemistry of nano-scale bacterial surface protein layers on gold |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T13%3A08%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electrochemistry%20of%20nano-scale%20bacterial%20surface%20protein%20layers%20on%20gold&rft.jtitle=Bioelectrochemistry%20(Amsterdam,%20Netherlands)&rft.au=Handrea,%20Marlene&rft.date=2003-10-01&rft.volume=61&rft.issue=1&rft.spage=1&rft.epage=8&rft.pages=1-8&rft.issn=1567-5394&rft.eissn=1878-562X&rft_id=info:doi/10.1016/S1567-5394(03)00047-1&rft_dat=%3Cproquest_cross%3E71417778%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=71417778&rft_id=info:pmid/14642904&rft_els_id=S1567539403000471&rfr_iscdi=true |