Electrochemistry of nano-scale bacterial surface protein layers on gold

The mechanism of the recrystallization of nano-scale bacterial surface protein layers (S-layers) on solid substrates is of fundamental interest in the understanding and engineering of biomembranes and e.g. biosensors. In this context, the influence of the charging state of the substrate had to be cl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bioelectrochemistry (Amsterdam, Netherlands) Netherlands), 2003-10, Vol.61 (1), p.1-8
Hauptverfasser: Handrea, Marlene, Sahre, Mario, Neubauer, Angela, Sleytr, Uwe B, Kautek, Wolfgang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 8
container_issue 1
container_start_page 1
container_title Bioelectrochemistry (Amsterdam, Netherlands)
container_volume 61
creator Handrea, Marlene
Sahre, Mario
Neubauer, Angela
Sleytr, Uwe B
Kautek, Wolfgang
description The mechanism of the recrystallization of nano-scale bacterial surface protein layers (S-layers) on solid substrates is of fundamental interest in the understanding and engineering of biomembranes and e.g. biosensors. In this context, the influence of the charging state of the substrate had to be clarified. Therefore, the electrochemical behaviour of the S-layers on gold electrodes has been investigated by in-situ electrochemical quartz microbalance (EQMB) measurements, scanning force microscopy (SFM) and small-spot X-ray photoelectron spectroscopy (SS-XPS) of potentiostatically emersed substrates. It was shown that the negatively charged bonding sites of the S-layer units (e.g. carboxylates) can bond with positively charged Au surface atoms in the positively charged electrochemical double layer region positive of the point of zero charge (∼−0.8 V vs. saturated mercury-mercurous sulphate electrode). Surface conditions in other potential regions decelerated the recrystallization and fixation of S-layers. Time-resolved in-situ and ex-situ measurements demonstrated that two-dimensional S-layer crystal formation on gold electrodes can occur within few minutes in contrast to hours common in self-assembled monolayer (SAM) generation. These results proved that the recrystallization and fixation of 2D-crystalline S-layers on an electronic conductor can be influenced and controlled by direct electrochemical manipulation.
doi_str_mv 10.1016/S1567-5394(03)00047-1
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_71417778</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1567539403000471</els_id><sourcerecordid>71417778</sourcerecordid><originalsourceid>FETCH-LOGICAL-c361t-a5b9c3f82b7bfad2fcadd09b89bb436e9e42e1f2c4f313d2f76514506e438023</originalsourceid><addsrcrecordid>eNqFkDtPwzAQgC0EolD4CSBPCIaAHb-SCaGqFKRKDHRgsxznDEFpXOwEqf8e94EYme6k--71IXRByS0lVN69UiFVJljJrwm7IYRwldEDdEILVWRC5m-HKf9FRug0xs8EFVSJYzSiXPK8JPwEzaYt2D54-wHLJvZhjb3Dnel8Fq1pAVfG9hAa0-I4BGcs4FXwPTQdbs0aQsS-w---rc_QkTNthPN9HKPF43QxecrmL7PnycM8s0zSPjOiKi1zRV6pypk6d9bUNSmroqwqziSUwHOgLrfcMcpSXUlBuSASOCtIzsboajc2XfE1QOx1utpC25oO_BC1opwqpYoEih1og48xgNOr0CxNWGtK9Eag3grUGzuaML0VqGnqu9wvGKol1H9de2MJuN8BkL78biDoaBvoLNRNSCZ17Zt_VvwA-keAsQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>71417778</pqid></control><display><type>article</type><title>Electrochemistry of nano-scale bacterial surface protein layers on gold</title><source>MEDLINE</source><source>Access via ScienceDirect (Elsevier)</source><creator>Handrea, Marlene ; Sahre, Mario ; Neubauer, Angela ; Sleytr, Uwe B ; Kautek, Wolfgang</creator><creatorcontrib>Handrea, Marlene ; Sahre, Mario ; Neubauer, Angela ; Sleytr, Uwe B ; Kautek, Wolfgang</creatorcontrib><description>The mechanism of the recrystallization of nano-scale bacterial surface protein layers (S-layers) on solid substrates is of fundamental interest in the understanding and engineering of biomembranes and e.g. biosensors. In this context, the influence of the charging state of the substrate had to be clarified. Therefore, the electrochemical behaviour of the S-layers on gold electrodes has been investigated by in-situ electrochemical quartz microbalance (EQMB) measurements, scanning force microscopy (SFM) and small-spot X-ray photoelectron spectroscopy (SS-XPS) of potentiostatically emersed substrates. It was shown that the negatively charged bonding sites of the S-layer units (e.g. carboxylates) can bond with positively charged Au surface atoms in the positively charged electrochemical double layer region positive of the point of zero charge (∼−0.8 V vs. saturated mercury-mercurous sulphate electrode). Surface conditions in other potential regions decelerated the recrystallization and fixation of S-layers. Time-resolved in-situ and ex-situ measurements demonstrated that two-dimensional S-layer crystal formation on gold electrodes can occur within few minutes in contrast to hours common in self-assembled monolayer (SAM) generation. These results proved that the recrystallization and fixation of 2D-crystalline S-layers on an electronic conductor can be influenced and controlled by direct electrochemical manipulation.</description><identifier>ISSN: 1567-5394</identifier><identifier>EISSN: 1878-562X</identifier><identifier>DOI: 10.1016/S1567-5394(03)00047-1</identifier><identifier>PMID: 14642904</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>Bacterial Outer Membrane Proteins - chemistry ; Bacterial Outer Membrane Proteins - metabolism ; Biosensing Techniques - methods ; Cell Membrane - chemistry ; Cell Membrane - metabolism ; Crystallization ; Electrochemical quartz microbalance ; Electrochemistry ; Electrodes ; Electron Probe Microanalysis ; Gold ; Gold - chemistry ; Microscopy, Electron, Scanning ; Nanotechnology ; Quartz ; S-layers crystallization ; Scanning force microscopy ; XPS</subject><ispartof>Bioelectrochemistry (Amsterdam, Netherlands), 2003-10, Vol.61 (1), p.1-8</ispartof><rights>2003</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c361t-a5b9c3f82b7bfad2fcadd09b89bb436e9e42e1f2c4f313d2f76514506e438023</citedby><cites>FETCH-LOGICAL-c361t-a5b9c3f82b7bfad2fcadd09b89bb436e9e42e1f2c4f313d2f76514506e438023</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/S1567-5394(03)00047-1$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/14642904$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Handrea, Marlene</creatorcontrib><creatorcontrib>Sahre, Mario</creatorcontrib><creatorcontrib>Neubauer, Angela</creatorcontrib><creatorcontrib>Sleytr, Uwe B</creatorcontrib><creatorcontrib>Kautek, Wolfgang</creatorcontrib><title>Electrochemistry of nano-scale bacterial surface protein layers on gold</title><title>Bioelectrochemistry (Amsterdam, Netherlands)</title><addtitle>Bioelectrochemistry</addtitle><description>The mechanism of the recrystallization of nano-scale bacterial surface protein layers (S-layers) on solid substrates is of fundamental interest in the understanding and engineering of biomembranes and e.g. biosensors. In this context, the influence of the charging state of the substrate had to be clarified. Therefore, the electrochemical behaviour of the S-layers on gold electrodes has been investigated by in-situ electrochemical quartz microbalance (EQMB) measurements, scanning force microscopy (SFM) and small-spot X-ray photoelectron spectroscopy (SS-XPS) of potentiostatically emersed substrates. It was shown that the negatively charged bonding sites of the S-layer units (e.g. carboxylates) can bond with positively charged Au surface atoms in the positively charged electrochemical double layer region positive of the point of zero charge (∼−0.8 V vs. saturated mercury-mercurous sulphate electrode). Surface conditions in other potential regions decelerated the recrystallization and fixation of S-layers. Time-resolved in-situ and ex-situ measurements demonstrated that two-dimensional S-layer crystal formation on gold electrodes can occur within few minutes in contrast to hours common in self-assembled monolayer (SAM) generation. These results proved that the recrystallization and fixation of 2D-crystalline S-layers on an electronic conductor can be influenced and controlled by direct electrochemical manipulation.</description><subject>Bacterial Outer Membrane Proteins - chemistry</subject><subject>Bacterial Outer Membrane Proteins - metabolism</subject><subject>Biosensing Techniques - methods</subject><subject>Cell Membrane - chemistry</subject><subject>Cell Membrane - metabolism</subject><subject>Crystallization</subject><subject>Electrochemical quartz microbalance</subject><subject>Electrochemistry</subject><subject>Electrodes</subject><subject>Electron Probe Microanalysis</subject><subject>Gold</subject><subject>Gold - chemistry</subject><subject>Microscopy, Electron, Scanning</subject><subject>Nanotechnology</subject><subject>Quartz</subject><subject>S-layers crystallization</subject><subject>Scanning force microscopy</subject><subject>XPS</subject><issn>1567-5394</issn><issn>1878-562X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkDtPwzAQgC0EolD4CSBPCIaAHb-SCaGqFKRKDHRgsxznDEFpXOwEqf8e94EYme6k--71IXRByS0lVN69UiFVJljJrwm7IYRwldEDdEILVWRC5m-HKf9FRug0xs8EFVSJYzSiXPK8JPwEzaYt2D54-wHLJvZhjb3Dnel8Fq1pAVfG9hAa0-I4BGcs4FXwPTQdbs0aQsS-w---rc_QkTNthPN9HKPF43QxecrmL7PnycM8s0zSPjOiKi1zRV6pypk6d9bUNSmroqwqziSUwHOgLrfcMcpSXUlBuSASOCtIzsboajc2XfE1QOx1utpC25oO_BC1opwqpYoEih1og48xgNOr0CxNWGtK9Eag3grUGzuaML0VqGnqu9wvGKol1H9de2MJuN8BkL78biDoaBvoLNRNSCZ17Zt_VvwA-keAsQ</recordid><startdate>20031001</startdate><enddate>20031001</enddate><creator>Handrea, Marlene</creator><creator>Sahre, Mario</creator><creator>Neubauer, Angela</creator><creator>Sleytr, Uwe B</creator><creator>Kautek, Wolfgang</creator><general>Elsevier B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20031001</creationdate><title>Electrochemistry of nano-scale bacterial surface protein layers on gold</title><author>Handrea, Marlene ; Sahre, Mario ; Neubauer, Angela ; Sleytr, Uwe B ; Kautek, Wolfgang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c361t-a5b9c3f82b7bfad2fcadd09b89bb436e9e42e1f2c4f313d2f76514506e438023</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Bacterial Outer Membrane Proteins - chemistry</topic><topic>Bacterial Outer Membrane Proteins - metabolism</topic><topic>Biosensing Techniques - methods</topic><topic>Cell Membrane - chemistry</topic><topic>Cell Membrane - metabolism</topic><topic>Crystallization</topic><topic>Electrochemical quartz microbalance</topic><topic>Electrochemistry</topic><topic>Electrodes</topic><topic>Electron Probe Microanalysis</topic><topic>Gold</topic><topic>Gold - chemistry</topic><topic>Microscopy, Electron, Scanning</topic><topic>Nanotechnology</topic><topic>Quartz</topic><topic>S-layers crystallization</topic><topic>Scanning force microscopy</topic><topic>XPS</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Handrea, Marlene</creatorcontrib><creatorcontrib>Sahre, Mario</creatorcontrib><creatorcontrib>Neubauer, Angela</creatorcontrib><creatorcontrib>Sleytr, Uwe B</creatorcontrib><creatorcontrib>Kautek, Wolfgang</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Bioelectrochemistry (Amsterdam, Netherlands)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Handrea, Marlene</au><au>Sahre, Mario</au><au>Neubauer, Angela</au><au>Sleytr, Uwe B</au><au>Kautek, Wolfgang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electrochemistry of nano-scale bacterial surface protein layers on gold</atitle><jtitle>Bioelectrochemistry (Amsterdam, Netherlands)</jtitle><addtitle>Bioelectrochemistry</addtitle><date>2003-10-01</date><risdate>2003</risdate><volume>61</volume><issue>1</issue><spage>1</spage><epage>8</epage><pages>1-8</pages><issn>1567-5394</issn><eissn>1878-562X</eissn><abstract>The mechanism of the recrystallization of nano-scale bacterial surface protein layers (S-layers) on solid substrates is of fundamental interest in the understanding and engineering of biomembranes and e.g. biosensors. In this context, the influence of the charging state of the substrate had to be clarified. Therefore, the electrochemical behaviour of the S-layers on gold electrodes has been investigated by in-situ electrochemical quartz microbalance (EQMB) measurements, scanning force microscopy (SFM) and small-spot X-ray photoelectron spectroscopy (SS-XPS) of potentiostatically emersed substrates. It was shown that the negatively charged bonding sites of the S-layer units (e.g. carboxylates) can bond with positively charged Au surface atoms in the positively charged electrochemical double layer region positive of the point of zero charge (∼−0.8 V vs. saturated mercury-mercurous sulphate electrode). Surface conditions in other potential regions decelerated the recrystallization and fixation of S-layers. Time-resolved in-situ and ex-situ measurements demonstrated that two-dimensional S-layer crystal formation on gold electrodes can occur within few minutes in contrast to hours common in self-assembled monolayer (SAM) generation. These results proved that the recrystallization and fixation of 2D-crystalline S-layers on an electronic conductor can be influenced and controlled by direct electrochemical manipulation.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>14642904</pmid><doi>10.1016/S1567-5394(03)00047-1</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1567-5394
ispartof Bioelectrochemistry (Amsterdam, Netherlands), 2003-10, Vol.61 (1), p.1-8
issn 1567-5394
1878-562X
language eng
recordid cdi_proquest_miscellaneous_71417778
source MEDLINE; Access via ScienceDirect (Elsevier)
subjects Bacterial Outer Membrane Proteins - chemistry
Bacterial Outer Membrane Proteins - metabolism
Biosensing Techniques - methods
Cell Membrane - chemistry
Cell Membrane - metabolism
Crystallization
Electrochemical quartz microbalance
Electrochemistry
Electrodes
Electron Probe Microanalysis
Gold
Gold - chemistry
Microscopy, Electron, Scanning
Nanotechnology
Quartz
S-layers crystallization
Scanning force microscopy
XPS
title Electrochemistry of nano-scale bacterial surface protein layers on gold
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T13%3A08%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electrochemistry%20of%20nano-scale%20bacterial%20surface%20protein%20layers%20on%20gold&rft.jtitle=Bioelectrochemistry%20(Amsterdam,%20Netherlands)&rft.au=Handrea,%20Marlene&rft.date=2003-10-01&rft.volume=61&rft.issue=1&rft.spage=1&rft.epage=8&rft.pages=1-8&rft.issn=1567-5394&rft.eissn=1878-562X&rft_id=info:doi/10.1016/S1567-5394(03)00047-1&rft_dat=%3Cproquest_cross%3E71417778%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=71417778&rft_id=info:pmid/14642904&rft_els_id=S1567539403000471&rfr_iscdi=true