A quantum chemical and statistical study of flavonoid compounds (flavones) with anti-HIV activity

The molecular orbital semi-empirical method AM1 was employed to calculate a set of molecular properties (variables) of 22 flavonoid compounds (flavones) with anti-HIV-1 activity and nine new compounds were proposed for anti-HIV-1 activity prediction. Pattern recognition techniques, principal compone...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:European journal of medicinal chemistry 2003-11, Vol.38 (11), p.929-938
Hauptverfasser: Souza, Jaime, de Almeida Santos, Regina Helena, Ferreira, Márcia Miguel Castro, Molfetta, Fábio Alberto, Camargo, Ademir João, Maria Honório, Káthia, da Silva, Albérico Borges Ferreira
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 938
container_issue 11
container_start_page 929
container_title European journal of medicinal chemistry
container_volume 38
creator Souza, Jaime
de Almeida Santos, Regina Helena
Ferreira, Márcia Miguel Castro
Molfetta, Fábio Alberto
Camargo, Ademir João
Maria Honório, Káthia
da Silva, Albérico Borges Ferreira
description The molecular orbital semi-empirical method AM1 was employed to calculate a set of molecular properties (variables) of 22 flavonoid compounds (flavones) with anti-HIV-1 activity and nine new compounds were proposed for anti-HIV-1 activity prediction. Pattern recognition techniques, principal component analysis (PCA), hierarchical cluster analysis (HCA), stepwise discriminant analysis (SDA) and K-nearest neighbor (KNN), were employed in order to reduce dimensionality and investigate which subset of variables could be more effective for classifying the flavones according to their degree of anti-HIV-1 activity. The PCA, HCA, SDA and KNN studies showed that the variables log P (partition coefficient), molecular volume (VOL) and electron affinity (EA) are responsible for the separation between anti-HIV-1 active and inactive compounds. The prediction study was done with a new set of nine analog compounds by using the PCA, HCA, SDA and KNN methods and only one of them was predicted as active against HIV-1.
doi_str_mv 10.1016/j.ejmech.2003.06.001
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_71417622</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0223523403001429</els_id><sourcerecordid>71417622</sourcerecordid><originalsourceid>FETCH-LOGICAL-c388t-b7baf0f2e0f0a84be342da9298fd2ef3a14d1ddf7e06324b5f00e20367047843</originalsourceid><addsrcrecordid>eNp9kE1r3DAQhkVJaTbb_oMQdElpD3ZHH_7IJRCWpgkEegm9ClkasVpsa2PJG_bfV6kXcutpmOF5X4aHkEsGJQNW_9iVuBvQbEsOIEqoSwD2gaxYU7eF4JU8IyvgXBQVF_KcXMS4A4CqBvhEzpmsJc_Qiug7-jLrMc0DNVscvNE91aOlMenkY_q3xzTbIw2Oul4fwhi8pSYM-zCPNtJvyxHjd_rq0zaHky8eHv9QbZI_-HT8TD463Uf8cppr8nz_83nzUDz9_vW4uXsqjGjbVHRNpx04juBAt7JDIbnVN_ymdZajE5pJy6x1DUItuOwqB4AcRN2AbFop1uTrUrufwsuMManBR4N9r0cMc1QNk1lNFrImcgHNFGKc0Kn95Ac9HRUD9WZW7dRiVr2ZVVCrbDbHrk79czegfQ-dVGbg-gTomK25SY_Gx3euEtAwBpm7XTjMMg4eJxWNx9Gg9ROapGzw___kLwkzmR8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>71417622</pqid></control><display><type>article</type><title>A quantum chemical and statistical study of flavonoid compounds (flavones) with anti-HIV activity</title><source>MEDLINE</source><source>Access via ScienceDirect (Elsevier)</source><creator>Souza, Jaime ; de Almeida Santos, Regina Helena ; Ferreira, Márcia Miguel Castro ; Molfetta, Fábio Alberto ; Camargo, Ademir João ; Maria Honório, Káthia ; da Silva, Albérico Borges Ferreira</creator><creatorcontrib>Souza, Jaime ; de Almeida Santos, Regina Helena ; Ferreira, Márcia Miguel Castro ; Molfetta, Fábio Alberto ; Camargo, Ademir João ; Maria Honório, Káthia ; da Silva, Albérico Borges Ferreira</creatorcontrib><description>The molecular orbital semi-empirical method AM1 was employed to calculate a set of molecular properties (variables) of 22 flavonoid compounds (flavones) with anti-HIV-1 activity and nine new compounds were proposed for anti-HIV-1 activity prediction. Pattern recognition techniques, principal component analysis (PCA), hierarchical cluster analysis (HCA), stepwise discriminant analysis (SDA) and K-nearest neighbor (KNN), were employed in order to reduce dimensionality and investigate which subset of variables could be more effective for classifying the flavones according to their degree of anti-HIV-1 activity. The PCA, HCA, SDA and KNN studies showed that the variables log P (partition coefficient), molecular volume (VOL) and electron affinity (EA) are responsible for the separation between anti-HIV-1 active and inactive compounds. The prediction study was done with a new set of nine analog compounds by using the PCA, HCA, SDA and KNN methods and only one of them was predicted as active against HIV-1.</description><identifier>ISSN: 0223-5234</identifier><identifier>EISSN: 1768-3254</identifier><identifier>DOI: 10.1016/j.ejmech.2003.06.001</identifier><identifier>PMID: 14642325</identifier><identifier>CODEN: EJMCA5</identifier><language>eng</language><publisher>Oxford: Elsevier Masson SAS</publisher><subject>AM1 ; Anti-HIV Agents - chemistry ; Anti-HIV-1 activity ; Antibiotics. Antiinfectious agents. Antiparasitic agents ; Antiviral agents ; Biological and medical sciences ; Cluster Analysis ; Flavones ; Flavonoids - chemistry ; Hierarchical cluster analysis ; K-nearest neighbor ; Medical sciences ; Pharmacology. Drug treatments ; Principal component analysis ; Principal Component Analysis - methods ; Stepwise discriminant analysis ; Structure-Activity Relationship</subject><ispartof>European journal of medicinal chemistry, 2003-11, Vol.38 (11), p.929-938</ispartof><rights>2003 Éditions scientifiques et médicales Elsevier SAS</rights><rights>2004 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c388t-b7baf0f2e0f0a84be342da9298fd2ef3a14d1ddf7e06324b5f00e20367047843</citedby><cites>FETCH-LOGICAL-c388t-b7baf0f2e0f0a84be342da9298fd2ef3a14d1ddf7e06324b5f00e20367047843</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.ejmech.2003.06.001$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=15307110$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/14642325$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Souza, Jaime</creatorcontrib><creatorcontrib>de Almeida Santos, Regina Helena</creatorcontrib><creatorcontrib>Ferreira, Márcia Miguel Castro</creatorcontrib><creatorcontrib>Molfetta, Fábio Alberto</creatorcontrib><creatorcontrib>Camargo, Ademir João</creatorcontrib><creatorcontrib>Maria Honório, Káthia</creatorcontrib><creatorcontrib>da Silva, Albérico Borges Ferreira</creatorcontrib><title>A quantum chemical and statistical study of flavonoid compounds (flavones) with anti-HIV activity</title><title>European journal of medicinal chemistry</title><addtitle>Eur J Med Chem</addtitle><description>The molecular orbital semi-empirical method AM1 was employed to calculate a set of molecular properties (variables) of 22 flavonoid compounds (flavones) with anti-HIV-1 activity and nine new compounds were proposed for anti-HIV-1 activity prediction. Pattern recognition techniques, principal component analysis (PCA), hierarchical cluster analysis (HCA), stepwise discriminant analysis (SDA) and K-nearest neighbor (KNN), were employed in order to reduce dimensionality and investigate which subset of variables could be more effective for classifying the flavones according to their degree of anti-HIV-1 activity. The PCA, HCA, SDA and KNN studies showed that the variables log P (partition coefficient), molecular volume (VOL) and electron affinity (EA) are responsible for the separation between anti-HIV-1 active and inactive compounds. The prediction study was done with a new set of nine analog compounds by using the PCA, HCA, SDA and KNN methods and only one of them was predicted as active against HIV-1.</description><subject>AM1</subject><subject>Anti-HIV Agents - chemistry</subject><subject>Anti-HIV-1 activity</subject><subject>Antibiotics. Antiinfectious agents. Antiparasitic agents</subject><subject>Antiviral agents</subject><subject>Biological and medical sciences</subject><subject>Cluster Analysis</subject><subject>Flavones</subject><subject>Flavonoids - chemistry</subject><subject>Hierarchical cluster analysis</subject><subject>K-nearest neighbor</subject><subject>Medical sciences</subject><subject>Pharmacology. Drug treatments</subject><subject>Principal component analysis</subject><subject>Principal Component Analysis - methods</subject><subject>Stepwise discriminant analysis</subject><subject>Structure-Activity Relationship</subject><issn>0223-5234</issn><issn>1768-3254</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kE1r3DAQhkVJaTbb_oMQdElpD3ZHH_7IJRCWpgkEegm9ClkasVpsa2PJG_bfV6kXcutpmOF5X4aHkEsGJQNW_9iVuBvQbEsOIEqoSwD2gaxYU7eF4JU8IyvgXBQVF_KcXMS4A4CqBvhEzpmsJc_Qiug7-jLrMc0DNVscvNE91aOlMenkY_q3xzTbIw2Oul4fwhi8pSYM-zCPNtJvyxHjd_rq0zaHky8eHv9QbZI_-HT8TD463Uf8cppr8nz_83nzUDz9_vW4uXsqjGjbVHRNpx04juBAt7JDIbnVN_ymdZajE5pJy6x1DUItuOwqB4AcRN2AbFop1uTrUrufwsuMManBR4N9r0cMc1QNk1lNFrImcgHNFGKc0Kn95Ac9HRUD9WZW7dRiVr2ZVVCrbDbHrk79czegfQ-dVGbg-gTomK25SY_Gx3euEtAwBpm7XTjMMg4eJxWNx9Gg9ROapGzw___kLwkzmR8</recordid><startdate>20031101</startdate><enddate>20031101</enddate><creator>Souza, Jaime</creator><creator>de Almeida Santos, Regina Helena</creator><creator>Ferreira, Márcia Miguel Castro</creator><creator>Molfetta, Fábio Alberto</creator><creator>Camargo, Ademir João</creator><creator>Maria Honório, Káthia</creator><creator>da Silva, Albérico Borges Ferreira</creator><general>Elsevier Masson SAS</general><general>Elsevier</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20031101</creationdate><title>A quantum chemical and statistical study of flavonoid compounds (flavones) with anti-HIV activity</title><author>Souza, Jaime ; de Almeida Santos, Regina Helena ; Ferreira, Márcia Miguel Castro ; Molfetta, Fábio Alberto ; Camargo, Ademir João ; Maria Honório, Káthia ; da Silva, Albérico Borges Ferreira</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c388t-b7baf0f2e0f0a84be342da9298fd2ef3a14d1ddf7e06324b5f00e20367047843</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>AM1</topic><topic>Anti-HIV Agents - chemistry</topic><topic>Anti-HIV-1 activity</topic><topic>Antibiotics. Antiinfectious agents. Antiparasitic agents</topic><topic>Antiviral agents</topic><topic>Biological and medical sciences</topic><topic>Cluster Analysis</topic><topic>Flavones</topic><topic>Flavonoids - chemistry</topic><topic>Hierarchical cluster analysis</topic><topic>K-nearest neighbor</topic><topic>Medical sciences</topic><topic>Pharmacology. Drug treatments</topic><topic>Principal component analysis</topic><topic>Principal Component Analysis - methods</topic><topic>Stepwise discriminant analysis</topic><topic>Structure-Activity Relationship</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Souza, Jaime</creatorcontrib><creatorcontrib>de Almeida Santos, Regina Helena</creatorcontrib><creatorcontrib>Ferreira, Márcia Miguel Castro</creatorcontrib><creatorcontrib>Molfetta, Fábio Alberto</creatorcontrib><creatorcontrib>Camargo, Ademir João</creatorcontrib><creatorcontrib>Maria Honório, Káthia</creatorcontrib><creatorcontrib>da Silva, Albérico Borges Ferreira</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>European journal of medicinal chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Souza, Jaime</au><au>de Almeida Santos, Regina Helena</au><au>Ferreira, Márcia Miguel Castro</au><au>Molfetta, Fábio Alberto</au><au>Camargo, Ademir João</au><au>Maria Honório, Káthia</au><au>da Silva, Albérico Borges Ferreira</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A quantum chemical and statistical study of flavonoid compounds (flavones) with anti-HIV activity</atitle><jtitle>European journal of medicinal chemistry</jtitle><addtitle>Eur J Med Chem</addtitle><date>2003-11-01</date><risdate>2003</risdate><volume>38</volume><issue>11</issue><spage>929</spage><epage>938</epage><pages>929-938</pages><issn>0223-5234</issn><eissn>1768-3254</eissn><coden>EJMCA5</coden><abstract>The molecular orbital semi-empirical method AM1 was employed to calculate a set of molecular properties (variables) of 22 flavonoid compounds (flavones) with anti-HIV-1 activity and nine new compounds were proposed for anti-HIV-1 activity prediction. Pattern recognition techniques, principal component analysis (PCA), hierarchical cluster analysis (HCA), stepwise discriminant analysis (SDA) and K-nearest neighbor (KNN), were employed in order to reduce dimensionality and investigate which subset of variables could be more effective for classifying the flavones according to their degree of anti-HIV-1 activity. The PCA, HCA, SDA and KNN studies showed that the variables log P (partition coefficient), molecular volume (VOL) and electron affinity (EA) are responsible for the separation between anti-HIV-1 active and inactive compounds. The prediction study was done with a new set of nine analog compounds by using the PCA, HCA, SDA and KNN methods and only one of them was predicted as active against HIV-1.</abstract><cop>Oxford</cop><pub>Elsevier Masson SAS</pub><pmid>14642325</pmid><doi>10.1016/j.ejmech.2003.06.001</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0223-5234
ispartof European journal of medicinal chemistry, 2003-11, Vol.38 (11), p.929-938
issn 0223-5234
1768-3254
language eng
recordid cdi_proquest_miscellaneous_71417622
source MEDLINE; Access via ScienceDirect (Elsevier)
subjects AM1
Anti-HIV Agents - chemistry
Anti-HIV-1 activity
Antibiotics. Antiinfectious agents. Antiparasitic agents
Antiviral agents
Biological and medical sciences
Cluster Analysis
Flavones
Flavonoids - chemistry
Hierarchical cluster analysis
K-nearest neighbor
Medical sciences
Pharmacology. Drug treatments
Principal component analysis
Principal Component Analysis - methods
Stepwise discriminant analysis
Structure-Activity Relationship
title A quantum chemical and statistical study of flavonoid compounds (flavones) with anti-HIV activity
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T23%3A38%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20quantum%20chemical%20and%20statistical%20study%20of%20flavonoid%20compounds%20(flavones)%20with%20anti-HIV%20activity&rft.jtitle=European%20journal%20of%20medicinal%20chemistry&rft.au=Souza,%20Jaime&rft.date=2003-11-01&rft.volume=38&rft.issue=11&rft.spage=929&rft.epage=938&rft.pages=929-938&rft.issn=0223-5234&rft.eissn=1768-3254&rft.coden=EJMCA5&rft_id=info:doi/10.1016/j.ejmech.2003.06.001&rft_dat=%3Cproquest_cross%3E71417622%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=71417622&rft_id=info:pmid/14642325&rft_els_id=S0223523403001429&rfr_iscdi=true