Na, K-ATPase overexpression improves alveolar fluid clearance in a rat model of elevated left atrial pressure
Acute elevation of left atrial pressure (LAP) increases extravascular water and impairs active Na(+) transport in rat lungs. We have reported that overexpression of Na,K-ATPase subunit genes in the alveolar epithelium increases alveolar fluid clearance (AFC) in normal and injured rat lungs with norm...
Gespeichert in:
Veröffentlicht in: | Circulation (New York, N.Y.) N.Y.), 2002-01, Vol.105 (4), p.497-501 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Acute elevation of left atrial pressure (LAP) increases extravascular water and impairs active Na(+) transport in rat lungs. We have reported that overexpression of Na,K-ATPase subunit genes in the alveolar epithelium increases alveolar fluid clearance (AFC) in normal and injured rat lungs with normal LAP. We reasoned that adenovirus-mediated transfer of an Na,K-ATPase beta-subunit gene to the alveolar epithelium could improve AFC in rat lungs in the presence of acutely elevated LAP.
Normal rats were infected with 4x10(9) plaque-forming units of E1a(-)/E3(-) recombinant adenoviruses that contained a cytomegalovirus promoter coupled to a rat Na,K-ATPase beta(1)-subunit cDNA (adbeta(1)) or no cDNA (adNull) 7 days before study. Na,K-ATPase alpha(1)- and beta(1)-subunit abundance in basolateral cell membranes isolated from the peripheral lung was significantly increased in adbeta(1)-infected lungs compared with sham and adNull-infected controls. In all groups, elevation of LAP reduced membrane-bound Na,K-ATPase abundance; however, abundance in adbeta(1)-infected lungs remained greater than in controls. AFC, measured with a fluid-filled isolated lung preparation in the presence of elevated LAP (15 cmH(2)O), in Na,K-ATPase beta(1)-subunit-overexpressing lungs was up to 100% greater than in controls and was not different from rats studied at normal LAP (0 cmH(2)O).
These data suggest that alveolar overexpression of an Na,K-ATPase beta(1)-subunit can counteract downregulation of membrane-bound solute transporters owing to elevated pulmonary vascular pressures and can restore active Na(+) transport and AFC in this rat model of acute hydrostatic pulmonary edema. |
---|---|
ISSN: | 0009-7322 1524-4539 |
DOI: | 10.1161/hc0402.102848 |