Genetic structure in a montane ranid frog: restricted gene flow and nuclear-mitochondrial discordance
There is substantial debate over the criteria that should be used to group populations of a species into distinct units for conservation (e.g. evolutionarily significant units, management units, distinct population segments). However, in practice molecular genetic differentiation is often the only o...
Gespeichert in:
Veröffentlicht in: | Molecular ecology 2003-12, Vol.12 (12), p.3275-3286 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3286 |
---|---|
container_issue | 12 |
container_start_page | 3275 |
container_title | Molecular ecology |
container_volume | 12 |
creator | Monsen, Kirsten J. Blouin, Michael S. |
description | There is substantial debate over the criteria that should be used to group populations of a species into distinct units for conservation (e.g. evolutionarily significant units, management units, distinct population segments). However, in practice molecular genetic differentiation is often the only or main criterion used to identify such units. Most genetic studies attempting to define conservation units in animals use a single molecular marker, most often mitochondrial, and use samples from a limited number of populations throughout the species’ range. Although there are many benefits to using mtDNA, certain features can cause it to show patterns of differentiation among populations that do not reflect the history of differentiation at the nuclear genome where loci controlling traits of adaptive significance presumably occur. Here we illustrate an example of such mitochondrial–nuclear discordance in a ranid frog, and show how using mtDNA or nuclear loci alone could have led to very different conservation recommendations. We also found very high genetic differentiation among populations on a local scale, and discuss the conservation implications of our results. |
doi_str_mv | 10.1046/j.1365-294X.2003.02001.x |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_71404617</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>71404617</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4341-14bbc02801a923361b9dbb74edfd7b2ab8a96580665f3c6447be5fca8867a0973</originalsourceid><addsrcrecordid>eNqNkUtv1DAURi1ERaeFv4C8YpfgdxIkFmjUmZYWEBIIdpZfKR4Su9iJOv33OMyoLGFjW_I519ffBQBiVGPExOtdjangFenY95ogRGtUVlzvn4DV48VTsEKdIBVGLT0FZznvCkIJ58_AKWaCdJTxFXBbF9zkDcxTms00Jwd9gAqOMUwqOJhU8Bb2Kd6-gckVyJvJWXhbLNgP8R6qYGGYzeBUqkY_RfMjBpu8GqD12cRkVTDuOTjp1ZDdi-N-Dr5uLr6sL6ubT9ur9bubyjDKcIWZ1gaRFmHVEUoF1p3VumHO9rbRROlWdYK3SAjeUyMYa7TjvVFtKxqFuoaeg1eHuncp_ppLu3IsTbhhKF-Jc5YNZiU-_G-QINwhQXkB2wNoUsw5uV7eJT-q9CAxksss5E4ukcslcrnMQv6ZhdwX9eXxjVmPzv4Vj-EX4O0BuPeDe_jvwvLDxXo5Fb86-D5Pbv_oq_RTioY2XH77uJXXn9lm276_lBv6Gw0jqB0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>20190635</pqid></control><display><type>article</type><title>Genetic structure in a montane ranid frog: restricted gene flow and nuclear-mitochondrial discordance</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Monsen, Kirsten J. ; Blouin, Michael S.</creator><creatorcontrib>Monsen, Kirsten J. ; Blouin, Michael S.</creatorcontrib><description>There is substantial debate over the criteria that should be used to group populations of a species into distinct units for conservation (e.g. evolutionarily significant units, management units, distinct population segments). However, in practice molecular genetic differentiation is often the only or main criterion used to identify such units. Most genetic studies attempting to define conservation units in animals use a single molecular marker, most often mitochondrial, and use samples from a limited number of populations throughout the species’ range. Although there are many benefits to using mtDNA, certain features can cause it to show patterns of differentiation among populations that do not reflect the history of differentiation at the nuclear genome where loci controlling traits of adaptive significance presumably occur. Here we illustrate an example of such mitochondrial–nuclear discordance in a ranid frog, and show how using mtDNA or nuclear loci alone could have led to very different conservation recommendations. We also found very high genetic differentiation among populations on a local scale, and discuss the conservation implications of our results.</description><identifier>ISSN: 0962-1083</identifier><identifier>EISSN: 1365-294X</identifier><identifier>DOI: 10.1046/j.1365-294X.2003.02001.x</identifier><identifier>PMID: 14629345</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Science Ltd</publisher><subject>Alleles ; amphibian conservation ; Animals ; Anura ; Cluster Analysis ; Conservation of Natural Resources ; discordant molecular markers ; DNA Primers ; DNA, Mitochondrial - genetics ; DPS ; Evolution, Molecular ; Freshwater ; gene flow ; Genetic Variation ; Genetics, Population ; Microsatellite Repeats - genetics ; Pacific States ; Polymorphism, Single-Stranded Conformational ; Rana cascadae ; ranidae ; Ranidae - genetics ; Sequence Analysis, DNA</subject><ispartof>Molecular ecology, 2003-12, Vol.12 (12), p.3275-3286</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4341-14bbc02801a923361b9dbb74edfd7b2ab8a96580665f3c6447be5fca8867a0973</citedby><cites>FETCH-LOGICAL-c4341-14bbc02801a923361b9dbb74edfd7b2ab8a96580665f3c6447be5fca8867a0973</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1046%2Fj.1365-294X.2003.02001.x$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1046%2Fj.1365-294X.2003.02001.x$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/14629345$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Monsen, Kirsten J.</creatorcontrib><creatorcontrib>Blouin, Michael S.</creatorcontrib><title>Genetic structure in a montane ranid frog: restricted gene flow and nuclear-mitochondrial discordance</title><title>Molecular ecology</title><addtitle>Mol Ecol</addtitle><description>There is substantial debate over the criteria that should be used to group populations of a species into distinct units for conservation (e.g. evolutionarily significant units, management units, distinct population segments). However, in practice molecular genetic differentiation is often the only or main criterion used to identify such units. Most genetic studies attempting to define conservation units in animals use a single molecular marker, most often mitochondrial, and use samples from a limited number of populations throughout the species’ range. Although there are many benefits to using mtDNA, certain features can cause it to show patterns of differentiation among populations that do not reflect the history of differentiation at the nuclear genome where loci controlling traits of adaptive significance presumably occur. Here we illustrate an example of such mitochondrial–nuclear discordance in a ranid frog, and show how using mtDNA or nuclear loci alone could have led to very different conservation recommendations. We also found very high genetic differentiation among populations on a local scale, and discuss the conservation implications of our results.</description><subject>Alleles</subject><subject>amphibian conservation</subject><subject>Animals</subject><subject>Anura</subject><subject>Cluster Analysis</subject><subject>Conservation of Natural Resources</subject><subject>discordant molecular markers</subject><subject>DNA Primers</subject><subject>DNA, Mitochondrial - genetics</subject><subject>DPS</subject><subject>Evolution, Molecular</subject><subject>Freshwater</subject><subject>gene flow</subject><subject>Genetic Variation</subject><subject>Genetics, Population</subject><subject>Microsatellite Repeats - genetics</subject><subject>Pacific States</subject><subject>Polymorphism, Single-Stranded Conformational</subject><subject>Rana cascadae</subject><subject>ranidae</subject><subject>Ranidae - genetics</subject><subject>Sequence Analysis, DNA</subject><issn>0962-1083</issn><issn>1365-294X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkUtv1DAURi1ERaeFv4C8YpfgdxIkFmjUmZYWEBIIdpZfKR4Su9iJOv33OMyoLGFjW_I519ffBQBiVGPExOtdjangFenY95ogRGtUVlzvn4DV48VTsEKdIBVGLT0FZznvCkIJ58_AKWaCdJTxFXBbF9zkDcxTms00Jwd9gAqOMUwqOJhU8Bb2Kd6-gckVyJvJWXhbLNgP8R6qYGGYzeBUqkY_RfMjBpu8GqD12cRkVTDuOTjp1ZDdi-N-Dr5uLr6sL6ubT9ur9bubyjDKcIWZ1gaRFmHVEUoF1p3VumHO9rbRROlWdYK3SAjeUyMYa7TjvVFtKxqFuoaeg1eHuncp_ppLu3IsTbhhKF-Jc5YNZiU-_G-QINwhQXkB2wNoUsw5uV7eJT-q9CAxksss5E4ukcslcrnMQv6ZhdwX9eXxjVmPzv4Vj-EX4O0BuPeDe_jvwvLDxXo5Fb86-D5Pbv_oq_RTioY2XH77uJXXn9lm276_lBv6Gw0jqB0</recordid><startdate>200312</startdate><enddate>200312</enddate><creator>Monsen, Kirsten J.</creator><creator>Blouin, Michael S.</creator><general>Blackwell Science Ltd</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SN</scope><scope>7ST</scope><scope>7U6</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H95</scope><scope>L.G</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>200312</creationdate><title>Genetic structure in a montane ranid frog: restricted gene flow and nuclear-mitochondrial discordance</title><author>Monsen, Kirsten J. ; Blouin, Michael S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4341-14bbc02801a923361b9dbb74edfd7b2ab8a96580665f3c6447be5fca8867a0973</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Alleles</topic><topic>amphibian conservation</topic><topic>Animals</topic><topic>Anura</topic><topic>Cluster Analysis</topic><topic>Conservation of Natural Resources</topic><topic>discordant molecular markers</topic><topic>DNA Primers</topic><topic>DNA, Mitochondrial - genetics</topic><topic>DPS</topic><topic>Evolution, Molecular</topic><topic>Freshwater</topic><topic>gene flow</topic><topic>Genetic Variation</topic><topic>Genetics, Population</topic><topic>Microsatellite Repeats - genetics</topic><topic>Pacific States</topic><topic>Polymorphism, Single-Stranded Conformational</topic><topic>Rana cascadae</topic><topic>ranidae</topic><topic>Ranidae - genetics</topic><topic>Sequence Analysis, DNA</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Monsen, Kirsten J.</creatorcontrib><creatorcontrib>Blouin, Michael S.</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Ecology Abstracts</collection><collection>Environment Abstracts</collection><collection>Sustainability Science Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Molecular ecology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Monsen, Kirsten J.</au><au>Blouin, Michael S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Genetic structure in a montane ranid frog: restricted gene flow and nuclear-mitochondrial discordance</atitle><jtitle>Molecular ecology</jtitle><addtitle>Mol Ecol</addtitle><date>2003-12</date><risdate>2003</risdate><volume>12</volume><issue>12</issue><spage>3275</spage><epage>3286</epage><pages>3275-3286</pages><issn>0962-1083</issn><eissn>1365-294X</eissn><abstract>There is substantial debate over the criteria that should be used to group populations of a species into distinct units for conservation (e.g. evolutionarily significant units, management units, distinct population segments). However, in practice molecular genetic differentiation is often the only or main criterion used to identify such units. Most genetic studies attempting to define conservation units in animals use a single molecular marker, most often mitochondrial, and use samples from a limited number of populations throughout the species’ range. Although there are many benefits to using mtDNA, certain features can cause it to show patterns of differentiation among populations that do not reflect the history of differentiation at the nuclear genome where loci controlling traits of adaptive significance presumably occur. Here we illustrate an example of such mitochondrial–nuclear discordance in a ranid frog, and show how using mtDNA or nuclear loci alone could have led to very different conservation recommendations. We also found very high genetic differentiation among populations on a local scale, and discuss the conservation implications of our results.</abstract><cop>Oxford, UK</cop><pub>Blackwell Science Ltd</pub><pmid>14629345</pmid><doi>10.1046/j.1365-294X.2003.02001.x</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0962-1083 |
ispartof | Molecular ecology, 2003-12, Vol.12 (12), p.3275-3286 |
issn | 0962-1083 1365-294X |
language | eng |
recordid | cdi_proquest_miscellaneous_71404617 |
source | MEDLINE; Wiley Online Library Journals Frontfile Complete |
subjects | Alleles amphibian conservation Animals Anura Cluster Analysis Conservation of Natural Resources discordant molecular markers DNA Primers DNA, Mitochondrial - genetics DPS Evolution, Molecular Freshwater gene flow Genetic Variation Genetics, Population Microsatellite Repeats - genetics Pacific States Polymorphism, Single-Stranded Conformational Rana cascadae ranidae Ranidae - genetics Sequence Analysis, DNA |
title | Genetic structure in a montane ranid frog: restricted gene flow and nuclear-mitochondrial discordance |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T11%3A24%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Genetic%20structure%20in%20a%20montane%20ranid%20frog:%20restricted%20gene%20flow%20and%20nuclear-mitochondrial%20discordance&rft.jtitle=Molecular%20ecology&rft.au=Monsen,%20Kirsten%20J.&rft.date=2003-12&rft.volume=12&rft.issue=12&rft.spage=3275&rft.epage=3286&rft.pages=3275-3286&rft.issn=0962-1083&rft.eissn=1365-294X&rft_id=info:doi/10.1046/j.1365-294X.2003.02001.x&rft_dat=%3Cproquest_cross%3E71404617%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=20190635&rft_id=info:pmid/14629345&rfr_iscdi=true |