Genetic structure in a montane ranid frog: restricted gene flow and nuclear-mitochondrial discordance

There is substantial debate over the criteria that should be used to group populations of a species into distinct units for conservation (e.g. evolutionarily significant units, management units, distinct population segments). However, in practice molecular genetic differentiation is often the only o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecular ecology 2003-12, Vol.12 (12), p.3275-3286
Hauptverfasser: Monsen, Kirsten J., Blouin, Michael S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3286
container_issue 12
container_start_page 3275
container_title Molecular ecology
container_volume 12
creator Monsen, Kirsten J.
Blouin, Michael S.
description There is substantial debate over the criteria that should be used to group populations of a species into distinct units for conservation (e.g. evolutionarily significant units, management units, distinct population segments). However, in practice molecular genetic differentiation is often the only or main criterion used to identify such units. Most genetic studies attempting to define conservation units in animals use a single molecular marker, most often mitochondrial, and use samples from a limited number of populations throughout the species’ range. Although there are many benefits to using mtDNA, certain features can cause it to show patterns of differentiation among populations that do not reflect the history of differentiation at the nuclear genome where loci controlling traits of adaptive significance presumably occur. Here we illustrate an example of such mitochondrial–nuclear discordance in a ranid frog, and show how using mtDNA or nuclear loci alone could have led to very different conservation recommendations. We also found very high genetic differentiation among populations on a local scale, and discuss the conservation implications of our results.
doi_str_mv 10.1046/j.1365-294X.2003.02001.x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_71404617</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>71404617</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4341-14bbc02801a923361b9dbb74edfd7b2ab8a96580665f3c6447be5fca8867a0973</originalsourceid><addsrcrecordid>eNqNkUtv1DAURi1ERaeFv4C8YpfgdxIkFmjUmZYWEBIIdpZfKR4Su9iJOv33OMyoLGFjW_I519ffBQBiVGPExOtdjangFenY95ogRGtUVlzvn4DV48VTsEKdIBVGLT0FZznvCkIJ58_AKWaCdJTxFXBbF9zkDcxTms00Jwd9gAqOMUwqOJhU8Bb2Kd6-gckVyJvJWXhbLNgP8R6qYGGYzeBUqkY_RfMjBpu8GqD12cRkVTDuOTjp1ZDdi-N-Dr5uLr6sL6ubT9ur9bubyjDKcIWZ1gaRFmHVEUoF1p3VumHO9rbRROlWdYK3SAjeUyMYa7TjvVFtKxqFuoaeg1eHuncp_ppLu3IsTbhhKF-Jc5YNZiU-_G-QINwhQXkB2wNoUsw5uV7eJT-q9CAxksss5E4ukcslcrnMQv6ZhdwX9eXxjVmPzv4Vj-EX4O0BuPeDe_jvwvLDxXo5Fb86-D5Pbv_oq_RTioY2XH77uJXXn9lm276_lBv6Gw0jqB0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>20190635</pqid></control><display><type>article</type><title>Genetic structure in a montane ranid frog: restricted gene flow and nuclear-mitochondrial discordance</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Monsen, Kirsten J. ; Blouin, Michael S.</creator><creatorcontrib>Monsen, Kirsten J. ; Blouin, Michael S.</creatorcontrib><description>There is substantial debate over the criteria that should be used to group populations of a species into distinct units for conservation (e.g. evolutionarily significant units, management units, distinct population segments). However, in practice molecular genetic differentiation is often the only or main criterion used to identify such units. Most genetic studies attempting to define conservation units in animals use a single molecular marker, most often mitochondrial, and use samples from a limited number of populations throughout the species’ range. Although there are many benefits to using mtDNA, certain features can cause it to show patterns of differentiation among populations that do not reflect the history of differentiation at the nuclear genome where loci controlling traits of adaptive significance presumably occur. Here we illustrate an example of such mitochondrial–nuclear discordance in a ranid frog, and show how using mtDNA or nuclear loci alone could have led to very different conservation recommendations. We also found very high genetic differentiation among populations on a local scale, and discuss the conservation implications of our results.</description><identifier>ISSN: 0962-1083</identifier><identifier>EISSN: 1365-294X</identifier><identifier>DOI: 10.1046/j.1365-294X.2003.02001.x</identifier><identifier>PMID: 14629345</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Science Ltd</publisher><subject>Alleles ; amphibian conservation ; Animals ; Anura ; Cluster Analysis ; Conservation of Natural Resources ; discordant molecular markers ; DNA Primers ; DNA, Mitochondrial - genetics ; DPS ; Evolution, Molecular ; Freshwater ; gene flow ; Genetic Variation ; Genetics, Population ; Microsatellite Repeats - genetics ; Pacific States ; Polymorphism, Single-Stranded Conformational ; Rana cascadae ; ranidae ; Ranidae - genetics ; Sequence Analysis, DNA</subject><ispartof>Molecular ecology, 2003-12, Vol.12 (12), p.3275-3286</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4341-14bbc02801a923361b9dbb74edfd7b2ab8a96580665f3c6447be5fca8867a0973</citedby><cites>FETCH-LOGICAL-c4341-14bbc02801a923361b9dbb74edfd7b2ab8a96580665f3c6447be5fca8867a0973</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1046%2Fj.1365-294X.2003.02001.x$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1046%2Fj.1365-294X.2003.02001.x$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/14629345$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Monsen, Kirsten J.</creatorcontrib><creatorcontrib>Blouin, Michael S.</creatorcontrib><title>Genetic structure in a montane ranid frog: restricted gene flow and nuclear-mitochondrial discordance</title><title>Molecular ecology</title><addtitle>Mol Ecol</addtitle><description>There is substantial debate over the criteria that should be used to group populations of a species into distinct units for conservation (e.g. evolutionarily significant units, management units, distinct population segments). However, in practice molecular genetic differentiation is often the only or main criterion used to identify such units. Most genetic studies attempting to define conservation units in animals use a single molecular marker, most often mitochondrial, and use samples from a limited number of populations throughout the species’ range. Although there are many benefits to using mtDNA, certain features can cause it to show patterns of differentiation among populations that do not reflect the history of differentiation at the nuclear genome where loci controlling traits of adaptive significance presumably occur. Here we illustrate an example of such mitochondrial–nuclear discordance in a ranid frog, and show how using mtDNA or nuclear loci alone could have led to very different conservation recommendations. We also found very high genetic differentiation among populations on a local scale, and discuss the conservation implications of our results.</description><subject>Alleles</subject><subject>amphibian conservation</subject><subject>Animals</subject><subject>Anura</subject><subject>Cluster Analysis</subject><subject>Conservation of Natural Resources</subject><subject>discordant molecular markers</subject><subject>DNA Primers</subject><subject>DNA, Mitochondrial - genetics</subject><subject>DPS</subject><subject>Evolution, Molecular</subject><subject>Freshwater</subject><subject>gene flow</subject><subject>Genetic Variation</subject><subject>Genetics, Population</subject><subject>Microsatellite Repeats - genetics</subject><subject>Pacific States</subject><subject>Polymorphism, Single-Stranded Conformational</subject><subject>Rana cascadae</subject><subject>ranidae</subject><subject>Ranidae - genetics</subject><subject>Sequence Analysis, DNA</subject><issn>0962-1083</issn><issn>1365-294X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkUtv1DAURi1ERaeFv4C8YpfgdxIkFmjUmZYWEBIIdpZfKR4Su9iJOv33OMyoLGFjW_I519ffBQBiVGPExOtdjangFenY95ogRGtUVlzvn4DV48VTsEKdIBVGLT0FZznvCkIJ58_AKWaCdJTxFXBbF9zkDcxTms00Jwd9gAqOMUwqOJhU8Bb2Kd6-gckVyJvJWXhbLNgP8R6qYGGYzeBUqkY_RfMjBpu8GqD12cRkVTDuOTjp1ZDdi-N-Dr5uLr6sL6ubT9ur9bubyjDKcIWZ1gaRFmHVEUoF1p3VumHO9rbRROlWdYK3SAjeUyMYa7TjvVFtKxqFuoaeg1eHuncp_ppLu3IsTbhhKF-Jc5YNZiU-_G-QINwhQXkB2wNoUsw5uV7eJT-q9CAxksss5E4ukcslcrnMQv6ZhdwX9eXxjVmPzv4Vj-EX4O0BuPeDe_jvwvLDxXo5Fb86-D5Pbv_oq_RTioY2XH77uJXXn9lm276_lBv6Gw0jqB0</recordid><startdate>200312</startdate><enddate>200312</enddate><creator>Monsen, Kirsten J.</creator><creator>Blouin, Michael S.</creator><general>Blackwell Science Ltd</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SN</scope><scope>7ST</scope><scope>7U6</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H95</scope><scope>L.G</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>200312</creationdate><title>Genetic structure in a montane ranid frog: restricted gene flow and nuclear-mitochondrial discordance</title><author>Monsen, Kirsten J. ; Blouin, Michael S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4341-14bbc02801a923361b9dbb74edfd7b2ab8a96580665f3c6447be5fca8867a0973</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Alleles</topic><topic>amphibian conservation</topic><topic>Animals</topic><topic>Anura</topic><topic>Cluster Analysis</topic><topic>Conservation of Natural Resources</topic><topic>discordant molecular markers</topic><topic>DNA Primers</topic><topic>DNA, Mitochondrial - genetics</topic><topic>DPS</topic><topic>Evolution, Molecular</topic><topic>Freshwater</topic><topic>gene flow</topic><topic>Genetic Variation</topic><topic>Genetics, Population</topic><topic>Microsatellite Repeats - genetics</topic><topic>Pacific States</topic><topic>Polymorphism, Single-Stranded Conformational</topic><topic>Rana cascadae</topic><topic>ranidae</topic><topic>Ranidae - genetics</topic><topic>Sequence Analysis, DNA</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Monsen, Kirsten J.</creatorcontrib><creatorcontrib>Blouin, Michael S.</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Ecology Abstracts</collection><collection>Environment Abstracts</collection><collection>Sustainability Science Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 1: Biological Sciences &amp; Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Molecular ecology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Monsen, Kirsten J.</au><au>Blouin, Michael S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Genetic structure in a montane ranid frog: restricted gene flow and nuclear-mitochondrial discordance</atitle><jtitle>Molecular ecology</jtitle><addtitle>Mol Ecol</addtitle><date>2003-12</date><risdate>2003</risdate><volume>12</volume><issue>12</issue><spage>3275</spage><epage>3286</epage><pages>3275-3286</pages><issn>0962-1083</issn><eissn>1365-294X</eissn><abstract>There is substantial debate over the criteria that should be used to group populations of a species into distinct units for conservation (e.g. evolutionarily significant units, management units, distinct population segments). However, in practice molecular genetic differentiation is often the only or main criterion used to identify such units. Most genetic studies attempting to define conservation units in animals use a single molecular marker, most often mitochondrial, and use samples from a limited number of populations throughout the species’ range. Although there are many benefits to using mtDNA, certain features can cause it to show patterns of differentiation among populations that do not reflect the history of differentiation at the nuclear genome where loci controlling traits of adaptive significance presumably occur. Here we illustrate an example of such mitochondrial–nuclear discordance in a ranid frog, and show how using mtDNA or nuclear loci alone could have led to very different conservation recommendations. We also found very high genetic differentiation among populations on a local scale, and discuss the conservation implications of our results.</abstract><cop>Oxford, UK</cop><pub>Blackwell Science Ltd</pub><pmid>14629345</pmid><doi>10.1046/j.1365-294X.2003.02001.x</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0962-1083
ispartof Molecular ecology, 2003-12, Vol.12 (12), p.3275-3286
issn 0962-1083
1365-294X
language eng
recordid cdi_proquest_miscellaneous_71404617
source MEDLINE; Wiley Online Library Journals Frontfile Complete
subjects Alleles
amphibian conservation
Animals
Anura
Cluster Analysis
Conservation of Natural Resources
discordant molecular markers
DNA Primers
DNA, Mitochondrial - genetics
DPS
Evolution, Molecular
Freshwater
gene flow
Genetic Variation
Genetics, Population
Microsatellite Repeats - genetics
Pacific States
Polymorphism, Single-Stranded Conformational
Rana cascadae
ranidae
Ranidae - genetics
Sequence Analysis, DNA
title Genetic structure in a montane ranid frog: restricted gene flow and nuclear-mitochondrial discordance
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T11%3A24%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Genetic%20structure%20in%20a%20montane%20ranid%20frog:%20restricted%20gene%20flow%20and%20nuclear-mitochondrial%20discordance&rft.jtitle=Molecular%20ecology&rft.au=Monsen,%20Kirsten%20J.&rft.date=2003-12&rft.volume=12&rft.issue=12&rft.spage=3275&rft.epage=3286&rft.pages=3275-3286&rft.issn=0962-1083&rft.eissn=1365-294X&rft_id=info:doi/10.1046/j.1365-294X.2003.02001.x&rft_dat=%3Cproquest_cross%3E71404617%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=20190635&rft_id=info:pmid/14629345&rfr_iscdi=true