Effects of Atmospheric Ozone on Microarray Data Quality

A data anomaly was observed that affected the uniformity and reproducibility of fluorescent signal across DNA microarrays. Results from experimental sets designed to identify potential causes (from microarray production to array scanning) indicated that the anomaly was linked to a batch process; fur...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Analytical chemistry (Washington) 2003-09, Vol.75 (17), p.4672-4675
Hauptverfasser: Fare, Thomas L, Coffey, Ernest M, Dai, Hongyue, He, Yudong D, Kessler, Deborah A, Kilian, Kristopher A, Koch, John E, LeProust, Eric, Marton, Matthew J, Meyer, Michael R, Stoughton, Roland B, Tokiwa, George Y, Wang, Yanqun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A data anomaly was observed that affected the uniformity and reproducibility of fluorescent signal across DNA microarrays. Results from experimental sets designed to identify potential causes (from microarray production to array scanning) indicated that the anomaly was linked to a batch process; further work allowed us to localize the effect to the posthybridization array stringency washes. Ozone levels were monitored and highly correlated with the batch effect. Controlled exposures of microarrays to ozone confirmed this factor as the root cause, and we present data that show susceptibility of a class of cyanine dyes (e.g., Cy5, Alexa 647) to ozone levels as low as 5−10 ppb for periods as short as 10−30 s. Other cyanine dyes (e.g., Cy3, Alexa 555) were not significantly affected until higher ozone levels (>100 ppb). To address this environmental effect, laboratory ozone levels should be kept below 2 ppb (e.g., with filters in HVAC) to achieve high quality microarray data.
ISSN:0003-2700
1520-6882
DOI:10.1021/ac034241b