Ion channel gating: insights via molecular simulations

Ion channels are gated, i.e. they can switch conformation between a closed and an open state. Molecular dynamics simulations may be used to study the conformational dynamics of ion channels and of simple channel models. Simulations on model nanopores reveal that a narrow (

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:FEBS letters 2003-11, Vol.555 (1), p.85-90
Hauptverfasser: Beckstein, Oliver, Biggin, Philip C, Bond, Peter, Bright, Joanne N, Domene, Carmen, Grottesi, Alessandro, Holyoake, John, Sansom, Mark S.P
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 90
container_issue 1
container_start_page 85
container_title FEBS letters
container_volume 555
creator Beckstein, Oliver
Biggin, Philip C
Bond, Peter
Bright, Joanne N
Domene, Carmen
Grottesi, Alessandro
Holyoake, John
Sansom, Mark S.P
description Ion channels are gated, i.e. they can switch conformation between a closed and an open state. Molecular dynamics simulations may be used to study the conformational dynamics of ion channels and of simple channel models. Simulations on model nanopores reveal that a narrow (
doi_str_mv 10.1016/S0014-5793(03)01151-7
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_71403411</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>71403411</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4837-219c96a51b9073e908c9a46933dceb09d5982eca26a84d916f9c01418a2dba7e3</originalsourceid><addsrcrecordid>eNqNkFtLwzAUgIMobk5_gtIn0YdqTpPm4puOzQ0GPqjPIU2zLZK2s2mV_XvbbeirEDjknO9c-BC6BHwHGNj9K8ZA45RLcoPJLQZIIeZHaAiCk5hQJo7R8BcZoLMQPnD3FyBP0QAoI5gkdIjYvCojs9ZlaX200o0rVw-RK4NbrZsQfTkdFZW3pvW6joIruti4qgzn6GSpfbAXhzhC79PJ23gWL16e5-PHRWyoIDxOQBrJdAqZxJxYiYWRmjJJSG5shmWeSpFYoxOmBc0lsKU03c0gdJJnmlsyQtf7uZu6-mxtaFThgrHe69JWbVAcKCYUoAPTPWjqKoTaLtWmdoWutwqw6oWpnTDV21C4e70wxbu-q8OCNits_td1MNQBsz3w7bzd_m-qmk6ekl2lL2CyS3PyA8MieRA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>71403411</pqid></control><display><type>article</type><title>Ion channel gating: insights via molecular simulations</title><source>Wiley Free Content</source><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Elsevier ScienceDirect Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><creator>Beckstein, Oliver ; Biggin, Philip C ; Bond, Peter ; Bright, Joanne N ; Domene, Carmen ; Grottesi, Alessandro ; Holyoake, John ; Sansom, Mark S.P</creator><creatorcontrib>Beckstein, Oliver ; Biggin, Philip C ; Bond, Peter ; Bright, Joanne N ; Domene, Carmen ; Grottesi, Alessandro ; Holyoake, John ; Sansom, Mark S.P</creatorcontrib><description>Ion channels are gated, i.e. they can switch conformation between a closed and an open state. Molecular dynamics simulations may be used to study the conformational dynamics of ion channels and of simple channel models. Simulations on model nanopores reveal that a narrow (&lt;4 Å) hydrophobic region can form a functionally closed gate in the channel and can be opened by either a small (∼1 Å) increase in pore radius or an increase in polarity. Modelling and simulation studies confirm the importance of hydrophobic gating in K channels, and support a model in which hinge‐bending of the pore‐lining M2 (or S6 in Kv channels) helices underlies channel gating. Simulations of a simple outer membrane protein, OmpA, indicate that a gate may also be formed by interactions of charged side chains within a pore, as is also the case in ClC channels.</description><identifier>ISSN: 0014-5793</identifier><identifier>EISSN: 1873-3468</identifier><identifier>DOI: 10.1016/S0014-5793(03)01151-7</identifier><identifier>PMID: 14630324</identifier><language>eng</language><publisher>England</publisher><subject>Bacterial Outer Membrane Proteins - chemistry ; Bacterial Outer Membrane Proteins - metabolism ; Gating ; Hydrophobic and Hydrophilic Interactions ; Ion channel ; Ion Channel Gating ; Ion Channels - chemistry ; Ion Channels - metabolism ; Models, Molecular ; Molecolar dynamics ; Nanopore ; Outer membrane protein ; Pore ; Potassium Channels - chemistry ; Potassium Channels - metabolism ; Protein Conformation ; Thermodynamics</subject><ispartof>FEBS letters, 2003-11, Vol.555 (1), p.85-90</ispartof><rights>FEBS Letters 555 (2003) 1873-3468 © 2015 Federation of European Biochemical Societies</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4837-219c96a51b9073e908c9a46933dceb09d5982eca26a84d916f9c01418a2dba7e3</citedby><cites>FETCH-LOGICAL-c4837-219c96a51b9073e908c9a46933dceb09d5982eca26a84d916f9c01418a2dba7e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1016%2FS0014-5793%2803%2901151-7$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1016%2FS0014-5793%2803%2901151-7$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,1427,27901,27902,45550,45551,46384,46808</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/14630324$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Beckstein, Oliver</creatorcontrib><creatorcontrib>Biggin, Philip C</creatorcontrib><creatorcontrib>Bond, Peter</creatorcontrib><creatorcontrib>Bright, Joanne N</creatorcontrib><creatorcontrib>Domene, Carmen</creatorcontrib><creatorcontrib>Grottesi, Alessandro</creatorcontrib><creatorcontrib>Holyoake, John</creatorcontrib><creatorcontrib>Sansom, Mark S.P</creatorcontrib><title>Ion channel gating: insights via molecular simulations</title><title>FEBS letters</title><addtitle>FEBS Lett</addtitle><description>Ion channels are gated, i.e. they can switch conformation between a closed and an open state. Molecular dynamics simulations may be used to study the conformational dynamics of ion channels and of simple channel models. Simulations on model nanopores reveal that a narrow (&lt;4 Å) hydrophobic region can form a functionally closed gate in the channel and can be opened by either a small (∼1 Å) increase in pore radius or an increase in polarity. Modelling and simulation studies confirm the importance of hydrophobic gating in K channels, and support a model in which hinge‐bending of the pore‐lining M2 (or S6 in Kv channels) helices underlies channel gating. Simulations of a simple outer membrane protein, OmpA, indicate that a gate may also be formed by interactions of charged side chains within a pore, as is also the case in ClC channels.</description><subject>Bacterial Outer Membrane Proteins - chemistry</subject><subject>Bacterial Outer Membrane Proteins - metabolism</subject><subject>Gating</subject><subject>Hydrophobic and Hydrophilic Interactions</subject><subject>Ion channel</subject><subject>Ion Channel Gating</subject><subject>Ion Channels - chemistry</subject><subject>Ion Channels - metabolism</subject><subject>Models, Molecular</subject><subject>Molecolar dynamics</subject><subject>Nanopore</subject><subject>Outer membrane protein</subject><subject>Pore</subject><subject>Potassium Channels - chemistry</subject><subject>Potassium Channels - metabolism</subject><subject>Protein Conformation</subject><subject>Thermodynamics</subject><issn>0014-5793</issn><issn>1873-3468</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkFtLwzAUgIMobk5_gtIn0YdqTpPm4puOzQ0GPqjPIU2zLZK2s2mV_XvbbeirEDjknO9c-BC6BHwHGNj9K8ZA45RLcoPJLQZIIeZHaAiCk5hQJo7R8BcZoLMQPnD3FyBP0QAoI5gkdIjYvCojs9ZlaX200o0rVw-RK4NbrZsQfTkdFZW3pvW6joIruti4qgzn6GSpfbAXhzhC79PJ23gWL16e5-PHRWyoIDxOQBrJdAqZxJxYiYWRmjJJSG5shmWeSpFYoxOmBc0lsKU03c0gdJJnmlsyQtf7uZu6-mxtaFThgrHe69JWbVAcKCYUoAPTPWjqKoTaLtWmdoWutwqw6oWpnTDV21C4e70wxbu-q8OCNits_td1MNQBsz3w7bzd_m-qmk6ekl2lL2CyS3PyA8MieRA</recordid><startdate>20031127</startdate><enddate>20031127</enddate><creator>Beckstein, Oliver</creator><creator>Biggin, Philip C</creator><creator>Bond, Peter</creator><creator>Bright, Joanne N</creator><creator>Domene, Carmen</creator><creator>Grottesi, Alessandro</creator><creator>Holyoake, John</creator><creator>Sansom, Mark S.P</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20031127</creationdate><title>Ion channel gating: insights via molecular simulations</title><author>Beckstein, Oliver ; Biggin, Philip C ; Bond, Peter ; Bright, Joanne N ; Domene, Carmen ; Grottesi, Alessandro ; Holyoake, John ; Sansom, Mark S.P</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4837-219c96a51b9073e908c9a46933dceb09d5982eca26a84d916f9c01418a2dba7e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Bacterial Outer Membrane Proteins - chemistry</topic><topic>Bacterial Outer Membrane Proteins - metabolism</topic><topic>Gating</topic><topic>Hydrophobic and Hydrophilic Interactions</topic><topic>Ion channel</topic><topic>Ion Channel Gating</topic><topic>Ion Channels - chemistry</topic><topic>Ion Channels - metabolism</topic><topic>Models, Molecular</topic><topic>Molecolar dynamics</topic><topic>Nanopore</topic><topic>Outer membrane protein</topic><topic>Pore</topic><topic>Potassium Channels - chemistry</topic><topic>Potassium Channels - metabolism</topic><topic>Protein Conformation</topic><topic>Thermodynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Beckstein, Oliver</creatorcontrib><creatorcontrib>Biggin, Philip C</creatorcontrib><creatorcontrib>Bond, Peter</creatorcontrib><creatorcontrib>Bright, Joanne N</creatorcontrib><creatorcontrib>Domene, Carmen</creatorcontrib><creatorcontrib>Grottesi, Alessandro</creatorcontrib><creatorcontrib>Holyoake, John</creatorcontrib><creatorcontrib>Sansom, Mark S.P</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>FEBS letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Beckstein, Oliver</au><au>Biggin, Philip C</au><au>Bond, Peter</au><au>Bright, Joanne N</au><au>Domene, Carmen</au><au>Grottesi, Alessandro</au><au>Holyoake, John</au><au>Sansom, Mark S.P</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ion channel gating: insights via molecular simulations</atitle><jtitle>FEBS letters</jtitle><addtitle>FEBS Lett</addtitle><date>2003-11-27</date><risdate>2003</risdate><volume>555</volume><issue>1</issue><spage>85</spage><epage>90</epage><pages>85-90</pages><issn>0014-5793</issn><eissn>1873-3468</eissn><abstract>Ion channels are gated, i.e. they can switch conformation between a closed and an open state. Molecular dynamics simulations may be used to study the conformational dynamics of ion channels and of simple channel models. Simulations on model nanopores reveal that a narrow (&lt;4 Å) hydrophobic region can form a functionally closed gate in the channel and can be opened by either a small (∼1 Å) increase in pore radius or an increase in polarity. Modelling and simulation studies confirm the importance of hydrophobic gating in K channels, and support a model in which hinge‐bending of the pore‐lining M2 (or S6 in Kv channels) helices underlies channel gating. Simulations of a simple outer membrane protein, OmpA, indicate that a gate may also be formed by interactions of charged side chains within a pore, as is also the case in ClC channels.</abstract><cop>England</cop><pmid>14630324</pmid><doi>10.1016/S0014-5793(03)01151-7</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0014-5793
ispartof FEBS letters, 2003-11, Vol.555 (1), p.85-90
issn 0014-5793
1873-3468
language eng
recordid cdi_proquest_miscellaneous_71403411
source Wiley Free Content; MEDLINE; Wiley Online Library Journals Frontfile Complete; Elsevier ScienceDirect Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection
subjects Bacterial Outer Membrane Proteins - chemistry
Bacterial Outer Membrane Proteins - metabolism
Gating
Hydrophobic and Hydrophilic Interactions
Ion channel
Ion Channel Gating
Ion Channels - chemistry
Ion Channels - metabolism
Models, Molecular
Molecolar dynamics
Nanopore
Outer membrane protein
Pore
Potassium Channels - chemistry
Potassium Channels - metabolism
Protein Conformation
Thermodynamics
title Ion channel gating: insights via molecular simulations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T03%3A48%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ion%20channel%20gating:%20insights%20via%20molecular%20simulations&rft.jtitle=FEBS%20letters&rft.au=Beckstein,%20Oliver&rft.date=2003-11-27&rft.volume=555&rft.issue=1&rft.spage=85&rft.epage=90&rft.pages=85-90&rft.issn=0014-5793&rft.eissn=1873-3468&rft_id=info:doi/10.1016/S0014-5793(03)01151-7&rft_dat=%3Cproquest_cross%3E71403411%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=71403411&rft_id=info:pmid/14630324&rfr_iscdi=true