Structural basis of the GM2 gangliosidosis B variant

To study the structural basis of the GM2 gangliosidosis B variant, we constructed the three-dimensional structures of the human β-hexosaminidase α-subunit and the heterodimer of the α- and β-subunits, Hex A, by homology modeling. The α-subunit is composed of two domains, domains I and II. Nine mutan...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of human genetics 2003-11, Vol.48 (11), p.582-589
Hauptverfasser: Matsuzawa, Fumiko, Aikawa, Sei-ichi, Sakuraba, Hitoshi, Lan, Hoang Thi Ngoc, Tanaka, Akemi, Ohno, Kousaku, Sugimoto, Yuko, Ninomiya, Haruaki, Doi, Hirofumi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 589
container_issue 11
container_start_page 582
container_title Journal of human genetics
container_volume 48
creator Matsuzawa, Fumiko
Aikawa, Sei-ichi
Sakuraba, Hitoshi
Lan, Hoang Thi Ngoc
Tanaka, Akemi
Ohno, Kousaku
Sugimoto, Yuko
Ninomiya, Haruaki
Doi, Hirofumi
description To study the structural basis of the GM2 gangliosidosis B variant, we constructed the three-dimensional structures of the human β-hexosaminidase α-subunit and the heterodimer of the α- and β-subunits, Hex A, by homology modeling. The α-subunit is composed of two domains, domains I and II. Nine mutant models due to specific missense mutations were constructed as well and compared with the wild type to determine structural defects. These nine mutations were divided into five groups according to structural defects. R178H is deduced to affect the active site directly, because R178 is important for binding to the substrate. C458Y and W420C are predicted to cause drastic structural changes in the barrel structure carrying the active site pocket. R504C/H is deduced to introduce a disruption of an essential binding with D494 in the β-subunit for dimerization. R499C/H, located in an extra-helix, is deduced to disrupt hydrogen bonds with domain I and the barrel. R170W and L484P are deduced to affect the interface between domains I and II, causing destabilization. The structural defects reflect the biochemical abnormalities of the disease.
doi_str_mv 10.1007/s10038-003-0082-7
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_71399262</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>71399262</sourcerecordid><originalsourceid>FETCH-LOGICAL-c551t-4294c7881d84813b5bfe8e1ee6edd20e40145593a11b0367bdf08d5e6bb653b3</originalsourceid><addsrcrecordid>eNp9kM9LwzAUx4MoTqd_gBcpCN6qefm9ow6dwsSDO3gLSZt2HV07k1bwvzezw4EHD3l54X2-3zy-CF0AvgGM5W2Ilao0lngUSeUBOgFGeUooeT_86VnKQcAInYawwhEkkhyjETAuZXydIPbW-T7rem_qxJpQhaQtkm7pktkLSUrTlHXVhipvt5P75NP4yjTdGToqTB3c-e4eo8Xjw2L6lM5fZ8_Tu3macQ5dysiEZVIpyBVTQC23hVMOnBMuzwl2DMc9-IQaAIupkDYvsMq5E9YKTi0do-vBduPbj96FTq-rkLm6No1r-6Al0MmECBLBqz_gqu19E1fThBEuQBDOIgUDlfk2BO8KvfHV2vgvDVhv89RDnjoWvc1Ty6i53Dn3du3yvWIXYATIAIQ4akrn91__55oMosbE5N2v62pZkogBFvQb3e-Igw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2425616254</pqid></control><display><type>article</type><title>Structural basis of the GM2 gangliosidosis B variant</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>SpringerLink Journals - AutoHoldings</source><creator>Matsuzawa, Fumiko ; Aikawa, Sei-ichi ; Sakuraba, Hitoshi ; Lan, Hoang Thi Ngoc ; Tanaka, Akemi ; Ohno, Kousaku ; Sugimoto, Yuko ; Ninomiya, Haruaki ; Doi, Hirofumi</creator><creatorcontrib>Matsuzawa, Fumiko ; Aikawa, Sei-ichi ; Sakuraba, Hitoshi ; Lan, Hoang Thi Ngoc ; Tanaka, Akemi ; Ohno, Kousaku ; Sugimoto, Yuko ; Ninomiya, Haruaki ; Doi, Hirofumi</creatorcontrib><description>To study the structural basis of the GM2 gangliosidosis B variant, we constructed the three-dimensional structures of the human β-hexosaminidase α-subunit and the heterodimer of the α- and β-subunits, Hex A, by homology modeling. The α-subunit is composed of two domains, domains I and II. Nine mutant models due to specific missense mutations were constructed as well and compared with the wild type to determine structural defects. These nine mutations were divided into five groups according to structural defects. R178H is deduced to affect the active site directly, because R178 is important for binding to the substrate. C458Y and W420C are predicted to cause drastic structural changes in the barrel structure carrying the active site pocket. R504C/H is deduced to introduce a disruption of an essential binding with D494 in the β-subunit for dimerization. R499C/H, located in an extra-helix, is deduced to disrupt hydrogen bonds with domain I and the barrel. R170W and L484P are deduced to affect the interface between domains I and II, causing destabilization. The structural defects reflect the biochemical abnormalities of the disease.</description><identifier>ISSN: 1434-5161</identifier><identifier>EISSN: 1435-232X</identifier><identifier>DOI: 10.1007/s10038-003-0082-7</identifier><identifier>PMID: 14577003</identifier><language>eng</language><publisher>Tokyo: Springer Japan</publisher><subject>Amino Acid Substitution ; beta-N-Acetylhexosaminidases - chemistry ; beta-N-Acetylhexosaminidases - genetics ; Biomedicine ; Cells, Cultured ; Defects ; Dimerization ; Gangliosidoses, GM2 - enzymology ; Gangliosidoses, GM2 - genetics ; Gangliosidosis ; Gene Expression ; Gene Function ; Gene Therapy ; Genetic Variation ; Hexosaminidase A ; Homology ; Human Genetics ; Humans ; Hydrogen bonding ; Isoenzymes - chemistry ; Isoenzymes - genetics ; Missense mutation ; Models, Molecular ; Molecular Medicine ; Mutation ; Original Article ; Protein Conformation</subject><ispartof>Journal of human genetics, 2003-11, Vol.48 (11), p.582-589</ispartof><rights>The Japan Society of Human Genetics and Springer-Verlag 2003</rights><rights>The Japan Society of Human Genetics and Springer-Verlag 2003.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c551t-4294c7881d84813b5bfe8e1ee6edd20e40145593a11b0367bdf08d5e6bb653b3</citedby><cites>FETCH-LOGICAL-c551t-4294c7881d84813b5bfe8e1ee6edd20e40145593a11b0367bdf08d5e6bb653b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10038-003-0082-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10038-003-0082-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/14577003$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Matsuzawa, Fumiko</creatorcontrib><creatorcontrib>Aikawa, Sei-ichi</creatorcontrib><creatorcontrib>Sakuraba, Hitoshi</creatorcontrib><creatorcontrib>Lan, Hoang Thi Ngoc</creatorcontrib><creatorcontrib>Tanaka, Akemi</creatorcontrib><creatorcontrib>Ohno, Kousaku</creatorcontrib><creatorcontrib>Sugimoto, Yuko</creatorcontrib><creatorcontrib>Ninomiya, Haruaki</creatorcontrib><creatorcontrib>Doi, Hirofumi</creatorcontrib><title>Structural basis of the GM2 gangliosidosis B variant</title><title>Journal of human genetics</title><addtitle>J Hum Genet</addtitle><addtitle>J Hum Genet</addtitle><description>To study the structural basis of the GM2 gangliosidosis B variant, we constructed the three-dimensional structures of the human β-hexosaminidase α-subunit and the heterodimer of the α- and β-subunits, Hex A, by homology modeling. The α-subunit is composed of two domains, domains I and II. Nine mutant models due to specific missense mutations were constructed as well and compared with the wild type to determine structural defects. These nine mutations were divided into five groups according to structural defects. R178H is deduced to affect the active site directly, because R178 is important for binding to the substrate. C458Y and W420C are predicted to cause drastic structural changes in the barrel structure carrying the active site pocket. R504C/H is deduced to introduce a disruption of an essential binding with D494 in the β-subunit for dimerization. R499C/H, located in an extra-helix, is deduced to disrupt hydrogen bonds with domain I and the barrel. R170W and L484P are deduced to affect the interface between domains I and II, causing destabilization. The structural defects reflect the biochemical abnormalities of the disease.</description><subject>Amino Acid Substitution</subject><subject>beta-N-Acetylhexosaminidases - chemistry</subject><subject>beta-N-Acetylhexosaminidases - genetics</subject><subject>Biomedicine</subject><subject>Cells, Cultured</subject><subject>Defects</subject><subject>Dimerization</subject><subject>Gangliosidoses, GM2 - enzymology</subject><subject>Gangliosidoses, GM2 - genetics</subject><subject>Gangliosidosis</subject><subject>Gene Expression</subject><subject>Gene Function</subject><subject>Gene Therapy</subject><subject>Genetic Variation</subject><subject>Hexosaminidase A</subject><subject>Homology</subject><subject>Human Genetics</subject><subject>Humans</subject><subject>Hydrogen bonding</subject><subject>Isoenzymes - chemistry</subject><subject>Isoenzymes - genetics</subject><subject>Missense mutation</subject><subject>Models, Molecular</subject><subject>Molecular Medicine</subject><subject>Mutation</subject><subject>Original Article</subject><subject>Protein Conformation</subject><issn>1434-5161</issn><issn>1435-232X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kM9LwzAUx4MoTqd_gBcpCN6qefm9ow6dwsSDO3gLSZt2HV07k1bwvzezw4EHD3l54X2-3zy-CF0AvgGM5W2Ilao0lngUSeUBOgFGeUooeT_86VnKQcAInYawwhEkkhyjETAuZXydIPbW-T7rem_qxJpQhaQtkm7pktkLSUrTlHXVhipvt5P75NP4yjTdGToqTB3c-e4eo8Xjw2L6lM5fZ8_Tu3macQ5dysiEZVIpyBVTQC23hVMOnBMuzwl2DMc9-IQaAIupkDYvsMq5E9YKTi0do-vBduPbj96FTq-rkLm6No1r-6Al0MmECBLBqz_gqu19E1fThBEuQBDOIgUDlfk2BO8KvfHV2vgvDVhv89RDnjoWvc1Ty6i53Dn3du3yvWIXYATIAIQ4akrn91__55oMosbE5N2v62pZkogBFvQb3e-Igw</recordid><startdate>20031101</startdate><enddate>20031101</enddate><creator>Matsuzawa, Fumiko</creator><creator>Aikawa, Sei-ichi</creator><creator>Sakuraba, Hitoshi</creator><creator>Lan, Hoang Thi Ngoc</creator><creator>Tanaka, Akemi</creator><creator>Ohno, Kousaku</creator><creator>Sugimoto, Yuko</creator><creator>Ninomiya, Haruaki</creator><creator>Doi, Hirofumi</creator><general>Springer Japan</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>20031101</creationdate><title>Structural basis of the GM2 gangliosidosis B variant</title><author>Matsuzawa, Fumiko ; Aikawa, Sei-ichi ; Sakuraba, Hitoshi ; Lan, Hoang Thi Ngoc ; Tanaka, Akemi ; Ohno, Kousaku ; Sugimoto, Yuko ; Ninomiya, Haruaki ; Doi, Hirofumi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c551t-4294c7881d84813b5bfe8e1ee6edd20e40145593a11b0367bdf08d5e6bb653b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Amino Acid Substitution</topic><topic>beta-N-Acetylhexosaminidases - chemistry</topic><topic>beta-N-Acetylhexosaminidases - genetics</topic><topic>Biomedicine</topic><topic>Cells, Cultured</topic><topic>Defects</topic><topic>Dimerization</topic><topic>Gangliosidoses, GM2 - enzymology</topic><topic>Gangliosidoses, GM2 - genetics</topic><topic>Gangliosidosis</topic><topic>Gene Expression</topic><topic>Gene Function</topic><topic>Gene Therapy</topic><topic>Genetic Variation</topic><topic>Hexosaminidase A</topic><topic>Homology</topic><topic>Human Genetics</topic><topic>Humans</topic><topic>Hydrogen bonding</topic><topic>Isoenzymes - chemistry</topic><topic>Isoenzymes - genetics</topic><topic>Missense mutation</topic><topic>Models, Molecular</topic><topic>Molecular Medicine</topic><topic>Mutation</topic><topic>Original Article</topic><topic>Protein Conformation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Matsuzawa, Fumiko</creatorcontrib><creatorcontrib>Aikawa, Sei-ichi</creatorcontrib><creatorcontrib>Sakuraba, Hitoshi</creatorcontrib><creatorcontrib>Lan, Hoang Thi Ngoc</creatorcontrib><creatorcontrib>Tanaka, Akemi</creatorcontrib><creatorcontrib>Ohno, Kousaku</creatorcontrib><creatorcontrib>Sugimoto, Yuko</creatorcontrib><creatorcontrib>Ninomiya, Haruaki</creatorcontrib><creatorcontrib>Doi, Hirofumi</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of human genetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Matsuzawa, Fumiko</au><au>Aikawa, Sei-ichi</au><au>Sakuraba, Hitoshi</au><au>Lan, Hoang Thi Ngoc</au><au>Tanaka, Akemi</au><au>Ohno, Kousaku</au><au>Sugimoto, Yuko</au><au>Ninomiya, Haruaki</au><au>Doi, Hirofumi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structural basis of the GM2 gangliosidosis B variant</atitle><jtitle>Journal of human genetics</jtitle><stitle>J Hum Genet</stitle><addtitle>J Hum Genet</addtitle><date>2003-11-01</date><risdate>2003</risdate><volume>48</volume><issue>11</issue><spage>582</spage><epage>589</epage><pages>582-589</pages><issn>1434-5161</issn><eissn>1435-232X</eissn><abstract>To study the structural basis of the GM2 gangliosidosis B variant, we constructed the three-dimensional structures of the human β-hexosaminidase α-subunit and the heterodimer of the α- and β-subunits, Hex A, by homology modeling. The α-subunit is composed of two domains, domains I and II. Nine mutant models due to specific missense mutations were constructed as well and compared with the wild type to determine structural defects. These nine mutations were divided into five groups according to structural defects. R178H is deduced to affect the active site directly, because R178 is important for binding to the substrate. C458Y and W420C are predicted to cause drastic structural changes in the barrel structure carrying the active site pocket. R504C/H is deduced to introduce a disruption of an essential binding with D494 in the β-subunit for dimerization. R499C/H, located in an extra-helix, is deduced to disrupt hydrogen bonds with domain I and the barrel. R170W and L484P are deduced to affect the interface between domains I and II, causing destabilization. The structural defects reflect the biochemical abnormalities of the disease.</abstract><cop>Tokyo</cop><pub>Springer Japan</pub><pmid>14577003</pmid><doi>10.1007/s10038-003-0082-7</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1434-5161
ispartof Journal of human genetics, 2003-11, Vol.48 (11), p.582-589
issn 1434-5161
1435-232X
language eng
recordid cdi_proquest_miscellaneous_71399262
source MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; SpringerLink Journals - AutoHoldings
subjects Amino Acid Substitution
beta-N-Acetylhexosaminidases - chemistry
beta-N-Acetylhexosaminidases - genetics
Biomedicine
Cells, Cultured
Defects
Dimerization
Gangliosidoses, GM2 - enzymology
Gangliosidoses, GM2 - genetics
Gangliosidosis
Gene Expression
Gene Function
Gene Therapy
Genetic Variation
Hexosaminidase A
Homology
Human Genetics
Humans
Hydrogen bonding
Isoenzymes - chemistry
Isoenzymes - genetics
Missense mutation
Models, Molecular
Molecular Medicine
Mutation
Original Article
Protein Conformation
title Structural basis of the GM2 gangliosidosis B variant
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T20%3A41%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structural%20basis%20of%20the%20GM2%20gangliosidosis%20B%20variant&rft.jtitle=Journal%20of%20human%20genetics&rft.au=Matsuzawa,%20Fumiko&rft.date=2003-11-01&rft.volume=48&rft.issue=11&rft.spage=582&rft.epage=589&rft.pages=582-589&rft.issn=1434-5161&rft.eissn=1435-232X&rft_id=info:doi/10.1007/s10038-003-0082-7&rft_dat=%3Cproquest_cross%3E71399262%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2425616254&rft_id=info:pmid/14577003&rfr_iscdi=true