Sensory input to primate spinal cord is presynaptically inhibited during voluntary movement
During normal voluntary movements, re-afferent sensory input continuously converges on the spinal circuits that are activated by descending motor commands. This time-varying input must either be synergistically combined with the motor commands or be appropriately suppressed to minimize interference....
Gespeichert in:
Veröffentlicht in: | Nature neuroscience 2003-12, Vol.6 (12), p.1309-1316 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1316 |
---|---|
container_issue | 12 |
container_start_page | 1309 |
container_title | Nature neuroscience |
container_volume | 6 |
creator | Seki, Kazuhiko Perlmutter, Steve I Fetz, Eberhard E |
description | During normal voluntary movements, re-afferent sensory input continuously converges on the spinal circuits that are activated by descending motor commands. This time-varying input must either be synergistically combined with the motor commands or be appropriately suppressed to minimize interference. The earliest suppression could be produced by presynaptic inhibition, which effectively reduces synaptic transmission at the initial synapse. Here we report evidence from awake, behaving monkeys that presynaptic inhibition decreases the ability of afferent impulses to affect postsynaptic neurons in a behaviorally dependent manner. Evidence indicates that cutaneous afferent input to spinal cord interneurons is inhibited presynaptically during active wrist movement, and this inhibition is effectively produced by descending commands. Our results further suggest that this presynaptic inhibition has appropriate functional consequences for movement generation and may underlie increases in perceptual thresholds during active movement. |
doi_str_mv | 10.1038/nn1154 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_71392517</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A185558486</galeid><sourcerecordid>A185558486</sourcerecordid><originalsourceid>FETCH-LOGICAL-c504t-f22a39839bc7dc43f06463355a6630a3f7f1df176037597e17acffcaa389289b3</originalsourceid><addsrcrecordid>eNqFkU9rFTEUxYNYbK36EWRw0eJiajL5O8tSrBYKhbauXIS8zM0zZSYZk0zxfXvzfA9KuzGBJBx-93BzD0IfCD4jmKovIRDC2St0VE_REtmJ1_WNe9mKjotD9DbnB4yx5Kp_gw4Jq2pdR-jnHYQc06bxYV5KU2IzJz-ZAk2efTBjY2MaGp-rDHkTzFy8NeO45X_5lS8wNMOSfFg3j3FcQjHVaoqPMEEo79CBM2OG9_v7GP24_Hp_8b29vvl2dXF-3VqOWWld1xnaK9qvrBwsow4LJijl3AhBsaFOOjI4IgWmkvcSiDTWOWsMVX2n-hU9Ric73znF3wvkoiefLYyjCRCXrCWhfceJ_C9IlGKMK1XBTy_Ah7ikOo6sO4olE5jQCp3toLUZQfvgYknG1j3A5G0M4HzVz4mqg1ZMiVrw-VlBZQr8KWuz5Kyv7m6fs_tWbYo5J3D6Xy5pownW28T1LvEKfty3uqwmGJ6wfcQVON0Bed7mBOnpLy-s_gKMXrID</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>230746013</pqid></control><display><type>article</type><title>Sensory input to primate spinal cord is presynaptically inhibited during voluntary movement</title><source>MEDLINE</source><source>SpringerLink Journals</source><source>Nature Journals Online</source><creator>Seki, Kazuhiko ; Perlmutter, Steve I ; Fetz, Eberhard E</creator><creatorcontrib>Seki, Kazuhiko ; Perlmutter, Steve I ; Fetz, Eberhard E</creatorcontrib><description>During normal voluntary movements, re-afferent sensory input continuously converges on the spinal circuits that are activated by descending motor commands. This time-varying input must either be synergistically combined with the motor commands or be appropriately suppressed to minimize interference. The earliest suppression could be produced by presynaptic inhibition, which effectively reduces synaptic transmission at the initial synapse. Here we report evidence from awake, behaving monkeys that presynaptic inhibition decreases the ability of afferent impulses to affect postsynaptic neurons in a behaviorally dependent manner. Evidence indicates that cutaneous afferent input to spinal cord interneurons is inhibited presynaptically during active wrist movement, and this inhibition is effectively produced by descending commands. Our results further suggest that this presynaptic inhibition has appropriate functional consequences for movement generation and may underlie increases in perceptual thresholds during active movement.</description><identifier>ISSN: 1097-6256</identifier><identifier>EISSN: 1546-1726</identifier><identifier>DOI: 10.1038/nn1154</identifier><identifier>PMID: 14625555</identifier><identifier>CODEN: NANEFN</identifier><language>eng</language><publisher>New York: Nature Publishing Group US</publisher><subject>Action Potentials - physiology ; Animal Genetics and Genomics ; Animals ; Behavioral Sciences ; Biological Techniques ; Biomedical and Life Sciences ; Biomedicine ; Macaca nemestrina ; Male ; Movement - physiology ; Neural Inhibition - physiology ; Neural Pathways - physiology ; Neural transmission ; Neurobiology ; Neurons, Afferent - physiology ; Neurosciences ; Physiological aspects ; Physiology ; Presynaptic Terminals - physiology ; Sensory receptors ; Spinal cord ; Spinal Cord - physiology</subject><ispartof>Nature neuroscience, 2003-12, Vol.6 (12), p.1309-1316</ispartof><rights>Springer Nature America, Inc. 2003</rights><rights>COPYRIGHT 2003 Nature Publishing Group</rights><rights>Copyright Nature Publishing Group Dec 2003</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c504t-f22a39839bc7dc43f06463355a6630a3f7f1df176037597e17acffcaa389289b3</citedby><cites>FETCH-LOGICAL-c504t-f22a39839bc7dc43f06463355a6630a3f7f1df176037597e17acffcaa389289b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/nn1154$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/nn1154$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/14625555$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Seki, Kazuhiko</creatorcontrib><creatorcontrib>Perlmutter, Steve I</creatorcontrib><creatorcontrib>Fetz, Eberhard E</creatorcontrib><title>Sensory input to primate spinal cord is presynaptically inhibited during voluntary movement</title><title>Nature neuroscience</title><addtitle>Nat Neurosci</addtitle><addtitle>Nat Neurosci</addtitle><description>During normal voluntary movements, re-afferent sensory input continuously converges on the spinal circuits that are activated by descending motor commands. This time-varying input must either be synergistically combined with the motor commands or be appropriately suppressed to minimize interference. The earliest suppression could be produced by presynaptic inhibition, which effectively reduces synaptic transmission at the initial synapse. Here we report evidence from awake, behaving monkeys that presynaptic inhibition decreases the ability of afferent impulses to affect postsynaptic neurons in a behaviorally dependent manner. Evidence indicates that cutaneous afferent input to spinal cord interneurons is inhibited presynaptically during active wrist movement, and this inhibition is effectively produced by descending commands. Our results further suggest that this presynaptic inhibition has appropriate functional consequences for movement generation and may underlie increases in perceptual thresholds during active movement.</description><subject>Action Potentials - physiology</subject><subject>Animal Genetics and Genomics</subject><subject>Animals</subject><subject>Behavioral Sciences</subject><subject>Biological Techniques</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Macaca nemestrina</subject><subject>Male</subject><subject>Movement - physiology</subject><subject>Neural Inhibition - physiology</subject><subject>Neural Pathways - physiology</subject><subject>Neural transmission</subject><subject>Neurobiology</subject><subject>Neurons, Afferent - physiology</subject><subject>Neurosciences</subject><subject>Physiological aspects</subject><subject>Physiology</subject><subject>Presynaptic Terminals - physiology</subject><subject>Sensory receptors</subject><subject>Spinal cord</subject><subject>Spinal Cord - physiology</subject><issn>1097-6256</issn><issn>1546-1726</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNqFkU9rFTEUxYNYbK36EWRw0eJiajL5O8tSrBYKhbauXIS8zM0zZSYZk0zxfXvzfA9KuzGBJBx-93BzD0IfCD4jmKovIRDC2St0VE_REtmJ1_WNe9mKjotD9DbnB4yx5Kp_gw4Jq2pdR-jnHYQc06bxYV5KU2IzJz-ZAk2efTBjY2MaGp-rDHkTzFy8NeO45X_5lS8wNMOSfFg3j3FcQjHVaoqPMEEo79CBM2OG9_v7GP24_Hp_8b29vvl2dXF-3VqOWWld1xnaK9qvrBwsow4LJijl3AhBsaFOOjI4IgWmkvcSiDTWOWsMVX2n-hU9Ric73znF3wvkoiefLYyjCRCXrCWhfceJ_C9IlGKMK1XBTy_Ah7ikOo6sO4olE5jQCp3toLUZQfvgYknG1j3A5G0M4HzVz4mqg1ZMiVrw-VlBZQr8KWuz5Kyv7m6fs_tWbYo5J3D6Xy5pownW28T1LvEKfty3uqwmGJ6wfcQVON0Bed7mBOnpLy-s_gKMXrID</recordid><startdate>20031201</startdate><enddate>20031201</enddate><creator>Seki, Kazuhiko</creator><creator>Perlmutter, Steve I</creator><creator>Fetz, Eberhard E</creator><general>Nature Publishing Group US</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>7TM</scope><scope>7U7</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88G</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>20031201</creationdate><title>Sensory input to primate spinal cord is presynaptically inhibited during voluntary movement</title><author>Seki, Kazuhiko ; Perlmutter, Steve I ; Fetz, Eberhard E</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c504t-f22a39839bc7dc43f06463355a6630a3f7f1df176037597e17acffcaa389289b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Action Potentials - physiology</topic><topic>Animal Genetics and Genomics</topic><topic>Animals</topic><topic>Behavioral Sciences</topic><topic>Biological Techniques</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Macaca nemestrina</topic><topic>Male</topic><topic>Movement - physiology</topic><topic>Neural Inhibition - physiology</topic><topic>Neural Pathways - physiology</topic><topic>Neural transmission</topic><topic>Neurobiology</topic><topic>Neurons, Afferent - physiology</topic><topic>Neurosciences</topic><topic>Physiological aspects</topic><topic>Physiology</topic><topic>Presynaptic Terminals - physiology</topic><topic>Sensory receptors</topic><topic>Spinal cord</topic><topic>Spinal Cord - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Seki, Kazuhiko</creatorcontrib><creatorcontrib>Perlmutter, Steve I</creatorcontrib><creatorcontrib>Fetz, Eberhard E</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection (ProQuest)</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Psychology</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Nature neuroscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Seki, Kazuhiko</au><au>Perlmutter, Steve I</au><au>Fetz, Eberhard E</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sensory input to primate spinal cord is presynaptically inhibited during voluntary movement</atitle><jtitle>Nature neuroscience</jtitle><stitle>Nat Neurosci</stitle><addtitle>Nat Neurosci</addtitle><date>2003-12-01</date><risdate>2003</risdate><volume>6</volume><issue>12</issue><spage>1309</spage><epage>1316</epage><pages>1309-1316</pages><issn>1097-6256</issn><eissn>1546-1726</eissn><coden>NANEFN</coden><abstract>During normal voluntary movements, re-afferent sensory input continuously converges on the spinal circuits that are activated by descending motor commands. This time-varying input must either be synergistically combined with the motor commands or be appropriately suppressed to minimize interference. The earliest suppression could be produced by presynaptic inhibition, which effectively reduces synaptic transmission at the initial synapse. Here we report evidence from awake, behaving monkeys that presynaptic inhibition decreases the ability of afferent impulses to affect postsynaptic neurons in a behaviorally dependent manner. Evidence indicates that cutaneous afferent input to spinal cord interneurons is inhibited presynaptically during active wrist movement, and this inhibition is effectively produced by descending commands. Our results further suggest that this presynaptic inhibition has appropriate functional consequences for movement generation and may underlie increases in perceptual thresholds during active movement.</abstract><cop>New York</cop><pub>Nature Publishing Group US</pub><pmid>14625555</pmid><doi>10.1038/nn1154</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1097-6256 |
ispartof | Nature neuroscience, 2003-12, Vol.6 (12), p.1309-1316 |
issn | 1097-6256 1546-1726 |
language | eng |
recordid | cdi_proquest_miscellaneous_71392517 |
source | MEDLINE; SpringerLink Journals; Nature Journals Online |
subjects | Action Potentials - physiology Animal Genetics and Genomics Animals Behavioral Sciences Biological Techniques Biomedical and Life Sciences Biomedicine Macaca nemestrina Male Movement - physiology Neural Inhibition - physiology Neural Pathways - physiology Neural transmission Neurobiology Neurons, Afferent - physiology Neurosciences Physiological aspects Physiology Presynaptic Terminals - physiology Sensory receptors Spinal cord Spinal Cord - physiology |
title | Sensory input to primate spinal cord is presynaptically inhibited during voluntary movement |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T10%3A13%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sensory%20input%20to%20primate%20spinal%20cord%20is%20presynaptically%20inhibited%20during%20voluntary%20movement&rft.jtitle=Nature%20neuroscience&rft.au=Seki,%20Kazuhiko&rft.date=2003-12-01&rft.volume=6&rft.issue=12&rft.spage=1309&rft.epage=1316&rft.pages=1309-1316&rft.issn=1097-6256&rft.eissn=1546-1726&rft.coden=NANEFN&rft_id=info:doi/10.1038/nn1154&rft_dat=%3Cgale_proqu%3EA185558486%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=230746013&rft_id=info:pmid/14625555&rft_galeid=A185558486&rfr_iscdi=true |