Sensory input to primate spinal cord is presynaptically inhibited during voluntary movement

During normal voluntary movements, re-afferent sensory input continuously converges on the spinal circuits that are activated by descending motor commands. This time-varying input must either be synergistically combined with the motor commands or be appropriately suppressed to minimize interference....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature neuroscience 2003-12, Vol.6 (12), p.1309-1316
Hauptverfasser: Seki, Kazuhiko, Perlmutter, Steve I, Fetz, Eberhard E
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1316
container_issue 12
container_start_page 1309
container_title Nature neuroscience
container_volume 6
creator Seki, Kazuhiko
Perlmutter, Steve I
Fetz, Eberhard E
description During normal voluntary movements, re-afferent sensory input continuously converges on the spinal circuits that are activated by descending motor commands. This time-varying input must either be synergistically combined with the motor commands or be appropriately suppressed to minimize interference. The earliest suppression could be produced by presynaptic inhibition, which effectively reduces synaptic transmission at the initial synapse. Here we report evidence from awake, behaving monkeys that presynaptic inhibition decreases the ability of afferent impulses to affect postsynaptic neurons in a behaviorally dependent manner. Evidence indicates that cutaneous afferent input to spinal cord interneurons is inhibited presynaptically during active wrist movement, and this inhibition is effectively produced by descending commands. Our results further suggest that this presynaptic inhibition has appropriate functional consequences for movement generation and may underlie increases in perceptual thresholds during active movement.
doi_str_mv 10.1038/nn1154
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_71392517</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A185558486</galeid><sourcerecordid>A185558486</sourcerecordid><originalsourceid>FETCH-LOGICAL-c504t-f22a39839bc7dc43f06463355a6630a3f7f1df176037597e17acffcaa389289b3</originalsourceid><addsrcrecordid>eNqFkU9rFTEUxYNYbK36EWRw0eJiajL5O8tSrBYKhbauXIS8zM0zZSYZk0zxfXvzfA9KuzGBJBx-93BzD0IfCD4jmKovIRDC2St0VE_REtmJ1_WNe9mKjotD9DbnB4yx5Kp_gw4Jq2pdR-jnHYQc06bxYV5KU2IzJz-ZAk2efTBjY2MaGp-rDHkTzFy8NeO45X_5lS8wNMOSfFg3j3FcQjHVaoqPMEEo79CBM2OG9_v7GP24_Hp_8b29vvl2dXF-3VqOWWld1xnaK9qvrBwsow4LJijl3AhBsaFOOjI4IgWmkvcSiDTWOWsMVX2n-hU9Ric73znF3wvkoiefLYyjCRCXrCWhfceJ_C9IlGKMK1XBTy_Ah7ikOo6sO4olE5jQCp3toLUZQfvgYknG1j3A5G0M4HzVz4mqg1ZMiVrw-VlBZQr8KWuz5Kyv7m6fs_tWbYo5J3D6Xy5pownW28T1LvEKfty3uqwmGJ6wfcQVON0Bed7mBOnpLy-s_gKMXrID</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>230746013</pqid></control><display><type>article</type><title>Sensory input to primate spinal cord is presynaptically inhibited during voluntary movement</title><source>MEDLINE</source><source>SpringerLink Journals</source><source>Nature Journals Online</source><creator>Seki, Kazuhiko ; Perlmutter, Steve I ; Fetz, Eberhard E</creator><creatorcontrib>Seki, Kazuhiko ; Perlmutter, Steve I ; Fetz, Eberhard E</creatorcontrib><description>During normal voluntary movements, re-afferent sensory input continuously converges on the spinal circuits that are activated by descending motor commands. This time-varying input must either be synergistically combined with the motor commands or be appropriately suppressed to minimize interference. The earliest suppression could be produced by presynaptic inhibition, which effectively reduces synaptic transmission at the initial synapse. Here we report evidence from awake, behaving monkeys that presynaptic inhibition decreases the ability of afferent impulses to affect postsynaptic neurons in a behaviorally dependent manner. Evidence indicates that cutaneous afferent input to spinal cord interneurons is inhibited presynaptically during active wrist movement, and this inhibition is effectively produced by descending commands. Our results further suggest that this presynaptic inhibition has appropriate functional consequences for movement generation and may underlie increases in perceptual thresholds during active movement.</description><identifier>ISSN: 1097-6256</identifier><identifier>EISSN: 1546-1726</identifier><identifier>DOI: 10.1038/nn1154</identifier><identifier>PMID: 14625555</identifier><identifier>CODEN: NANEFN</identifier><language>eng</language><publisher>New York: Nature Publishing Group US</publisher><subject>Action Potentials - physiology ; Animal Genetics and Genomics ; Animals ; Behavioral Sciences ; Biological Techniques ; Biomedical and Life Sciences ; Biomedicine ; Macaca nemestrina ; Male ; Movement - physiology ; Neural Inhibition - physiology ; Neural Pathways - physiology ; Neural transmission ; Neurobiology ; Neurons, Afferent - physiology ; Neurosciences ; Physiological aspects ; Physiology ; Presynaptic Terminals - physiology ; Sensory receptors ; Spinal cord ; Spinal Cord - physiology</subject><ispartof>Nature neuroscience, 2003-12, Vol.6 (12), p.1309-1316</ispartof><rights>Springer Nature America, Inc. 2003</rights><rights>COPYRIGHT 2003 Nature Publishing Group</rights><rights>Copyright Nature Publishing Group Dec 2003</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c504t-f22a39839bc7dc43f06463355a6630a3f7f1df176037597e17acffcaa389289b3</citedby><cites>FETCH-LOGICAL-c504t-f22a39839bc7dc43f06463355a6630a3f7f1df176037597e17acffcaa389289b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/nn1154$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/nn1154$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/14625555$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Seki, Kazuhiko</creatorcontrib><creatorcontrib>Perlmutter, Steve I</creatorcontrib><creatorcontrib>Fetz, Eberhard E</creatorcontrib><title>Sensory input to primate spinal cord is presynaptically inhibited during voluntary movement</title><title>Nature neuroscience</title><addtitle>Nat Neurosci</addtitle><addtitle>Nat Neurosci</addtitle><description>During normal voluntary movements, re-afferent sensory input continuously converges on the spinal circuits that are activated by descending motor commands. This time-varying input must either be synergistically combined with the motor commands or be appropriately suppressed to minimize interference. The earliest suppression could be produced by presynaptic inhibition, which effectively reduces synaptic transmission at the initial synapse. Here we report evidence from awake, behaving monkeys that presynaptic inhibition decreases the ability of afferent impulses to affect postsynaptic neurons in a behaviorally dependent manner. Evidence indicates that cutaneous afferent input to spinal cord interneurons is inhibited presynaptically during active wrist movement, and this inhibition is effectively produced by descending commands. Our results further suggest that this presynaptic inhibition has appropriate functional consequences for movement generation and may underlie increases in perceptual thresholds during active movement.</description><subject>Action Potentials - physiology</subject><subject>Animal Genetics and Genomics</subject><subject>Animals</subject><subject>Behavioral Sciences</subject><subject>Biological Techniques</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Macaca nemestrina</subject><subject>Male</subject><subject>Movement - physiology</subject><subject>Neural Inhibition - physiology</subject><subject>Neural Pathways - physiology</subject><subject>Neural transmission</subject><subject>Neurobiology</subject><subject>Neurons, Afferent - physiology</subject><subject>Neurosciences</subject><subject>Physiological aspects</subject><subject>Physiology</subject><subject>Presynaptic Terminals - physiology</subject><subject>Sensory receptors</subject><subject>Spinal cord</subject><subject>Spinal Cord - physiology</subject><issn>1097-6256</issn><issn>1546-1726</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNqFkU9rFTEUxYNYbK36EWRw0eJiajL5O8tSrBYKhbauXIS8zM0zZSYZk0zxfXvzfA9KuzGBJBx-93BzD0IfCD4jmKovIRDC2St0VE_REtmJ1_WNe9mKjotD9DbnB4yx5Kp_gw4Jq2pdR-jnHYQc06bxYV5KU2IzJz-ZAk2efTBjY2MaGp-rDHkTzFy8NeO45X_5lS8wNMOSfFg3j3FcQjHVaoqPMEEo79CBM2OG9_v7GP24_Hp_8b29vvl2dXF-3VqOWWld1xnaK9qvrBwsow4LJijl3AhBsaFOOjI4IgWmkvcSiDTWOWsMVX2n-hU9Ric73znF3wvkoiefLYyjCRCXrCWhfceJ_C9IlGKMK1XBTy_Ah7ikOo6sO4olE5jQCp3toLUZQfvgYknG1j3A5G0M4HzVz4mqg1ZMiVrw-VlBZQr8KWuz5Kyv7m6fs_tWbYo5J3D6Xy5pownW28T1LvEKfty3uqwmGJ6wfcQVON0Bed7mBOnpLy-s_gKMXrID</recordid><startdate>20031201</startdate><enddate>20031201</enddate><creator>Seki, Kazuhiko</creator><creator>Perlmutter, Steve I</creator><creator>Fetz, Eberhard E</creator><general>Nature Publishing Group US</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>7TM</scope><scope>7U7</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88G</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>20031201</creationdate><title>Sensory input to primate spinal cord is presynaptically inhibited during voluntary movement</title><author>Seki, Kazuhiko ; Perlmutter, Steve I ; Fetz, Eberhard E</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c504t-f22a39839bc7dc43f06463355a6630a3f7f1df176037597e17acffcaa389289b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Action Potentials - physiology</topic><topic>Animal Genetics and Genomics</topic><topic>Animals</topic><topic>Behavioral Sciences</topic><topic>Biological Techniques</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Macaca nemestrina</topic><topic>Male</topic><topic>Movement - physiology</topic><topic>Neural Inhibition - physiology</topic><topic>Neural Pathways - physiology</topic><topic>Neural transmission</topic><topic>Neurobiology</topic><topic>Neurons, Afferent - physiology</topic><topic>Neurosciences</topic><topic>Physiological aspects</topic><topic>Physiology</topic><topic>Presynaptic Terminals - physiology</topic><topic>Sensory receptors</topic><topic>Spinal cord</topic><topic>Spinal Cord - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Seki, Kazuhiko</creatorcontrib><creatorcontrib>Perlmutter, Steve I</creatorcontrib><creatorcontrib>Fetz, Eberhard E</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection (ProQuest)</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Psychology</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Nature neuroscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Seki, Kazuhiko</au><au>Perlmutter, Steve I</au><au>Fetz, Eberhard E</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sensory input to primate spinal cord is presynaptically inhibited during voluntary movement</atitle><jtitle>Nature neuroscience</jtitle><stitle>Nat Neurosci</stitle><addtitle>Nat Neurosci</addtitle><date>2003-12-01</date><risdate>2003</risdate><volume>6</volume><issue>12</issue><spage>1309</spage><epage>1316</epage><pages>1309-1316</pages><issn>1097-6256</issn><eissn>1546-1726</eissn><coden>NANEFN</coden><abstract>During normal voluntary movements, re-afferent sensory input continuously converges on the spinal circuits that are activated by descending motor commands. This time-varying input must either be synergistically combined with the motor commands or be appropriately suppressed to minimize interference. The earliest suppression could be produced by presynaptic inhibition, which effectively reduces synaptic transmission at the initial synapse. Here we report evidence from awake, behaving monkeys that presynaptic inhibition decreases the ability of afferent impulses to affect postsynaptic neurons in a behaviorally dependent manner. Evidence indicates that cutaneous afferent input to spinal cord interneurons is inhibited presynaptically during active wrist movement, and this inhibition is effectively produced by descending commands. Our results further suggest that this presynaptic inhibition has appropriate functional consequences for movement generation and may underlie increases in perceptual thresholds during active movement.</abstract><cop>New York</cop><pub>Nature Publishing Group US</pub><pmid>14625555</pmid><doi>10.1038/nn1154</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1097-6256
ispartof Nature neuroscience, 2003-12, Vol.6 (12), p.1309-1316
issn 1097-6256
1546-1726
language eng
recordid cdi_proquest_miscellaneous_71392517
source MEDLINE; SpringerLink Journals; Nature Journals Online
subjects Action Potentials - physiology
Animal Genetics and Genomics
Animals
Behavioral Sciences
Biological Techniques
Biomedical and Life Sciences
Biomedicine
Macaca nemestrina
Male
Movement - physiology
Neural Inhibition - physiology
Neural Pathways - physiology
Neural transmission
Neurobiology
Neurons, Afferent - physiology
Neurosciences
Physiological aspects
Physiology
Presynaptic Terminals - physiology
Sensory receptors
Spinal cord
Spinal Cord - physiology
title Sensory input to primate spinal cord is presynaptically inhibited during voluntary movement
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T10%3A13%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sensory%20input%20to%20primate%20spinal%20cord%20is%20presynaptically%20inhibited%20during%20voluntary%20movement&rft.jtitle=Nature%20neuroscience&rft.au=Seki,%20Kazuhiko&rft.date=2003-12-01&rft.volume=6&rft.issue=12&rft.spage=1309&rft.epage=1316&rft.pages=1309-1316&rft.issn=1097-6256&rft.eissn=1546-1726&rft.coden=NANEFN&rft_id=info:doi/10.1038/nn1154&rft_dat=%3Cgale_proqu%3EA185558486%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=230746013&rft_id=info:pmid/14625555&rft_galeid=A185558486&rfr_iscdi=true