Weak measurement invariance with respect to unmeasured variables: An implication of strict factorial invariance

Measurement bias refers to systematic differences across subpopulations in the relation between observed test scores and the latent variant underlying the test scores. Comparisons of subpopulations with the same score on the latent variable can be expected to have the same observed test score. Measu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:British journal of mathematical & statistical psychology 2003-11, Vol.56 (2), p.231-248
Hauptverfasser: Lubke, Gitta H., Dolan, Conor V., Kelderman, Henk, Mellenbergh, Gideon J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 248
container_issue 2
container_start_page 231
container_title British journal of mathematical & statistical psychology
container_volume 56
creator Lubke, Gitta H.
Dolan, Conor V.
Kelderman, Henk
Mellenbergh, Gideon J.
description Measurement bias refers to systematic differences across subpopulations in the relation between observed test scores and the latent variant underlying the test scores. Comparisons of subpopulations with the same score on the latent variable can be expected to have the same observed test score. Measurement invariance is therefore one of the key issues in psychological testing. It has been established that strict factorial invariance (SFI) with respect to a selection variable V almost certainly implies weak measurement invariance with respect to V: given SFI, means and variances of observed scores do not depend on V. It is shown that this result can be extended. SFI in groups derived by selection on V has implications not only for V but also for potentially biasing variables W, if W and the selection variable V and/or if W and the factor underlying the observed test scores are statistically dependent. Given SFI with respect to V and prior knowledge concerning these dependencies, it is not necessary to measure and model variables W in order to exclude them as potentially biasing variables if the investigation focuses on groups selected on V.
doi_str_mv 10.1348/000711003770480020
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_71386338</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>522508461</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4872-d4357bc4026d71dc7af9780e365d54f642bed78e7834f1f027ace53f0e9dfc203</originalsourceid><addsrcrecordid>eNqN0ctuFDEQBVALgUgI_AALZLFg11B-dJfDLgkwQRoegqBZWh53WTjpx2B3E_L3eJgRIFiAN96ce2VXMfZQwFOhtHkGACgEgEIEbQAk3GKHErSujBJ4mx1uQVWEPGD3cr4EELKG5i47ELpR5ehDNq7IXfGeXJ4T9TRMPA5fXYpu8MSv4_SZJ8ob8hOfRj4Pe9jyH2bdUX7OTwYe-00XvZviOPAx8DylWBLB-WksrPut8z67E1yX6cH-PmKfXr28ODuvlu8Wr89OlpXXBmXValXj2muQTYui9ejCMRog1dRtrUOj5ZpaNIRG6SACSHSeahWAjtvgJagj9mTXu0njl5nyZPuYPXWdG2ics0WhTJmB-SeUQiBILQt8_Ae8HOc0lE8U02iUaHRBcod8GnNOFOwmxd6lGyvAbpdm_15aCT3aN8_rntpfkf2WCsAduI4d3fxHpT198_G9ENtHV7tkzBN9-5l06co2qLC2q7cLu_xw0bxYnJ7blfoOTACw8Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>216472784</pqid></control><display><type>article</type><title>Weak measurement invariance with respect to unmeasured variables: An implication of strict factorial invariance</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Lubke, Gitta H. ; Dolan, Conor V. ; Kelderman, Henk ; Mellenbergh, Gideon J.</creator><creatorcontrib>Lubke, Gitta H. ; Dolan, Conor V. ; Kelderman, Henk ; Mellenbergh, Gideon J.</creatorcontrib><description>Measurement bias refers to systematic differences across subpopulations in the relation between observed test scores and the latent variant underlying the test scores. Comparisons of subpopulations with the same score on the latent variable can be expected to have the same observed test score. Measurement invariance is therefore one of the key issues in psychological testing. It has been established that strict factorial invariance (SFI) with respect to a selection variable V almost certainly implies weak measurement invariance with respect to V: given SFI, means and variances of observed scores do not depend on V. It is shown that this result can be extended. SFI in groups derived by selection on V has implications not only for V but also for potentially biasing variables W, if W and the selection variable V and/or if W and the factor underlying the observed test scores are statistically dependent. Given SFI with respect to V and prior knowledge concerning these dependencies, it is not necessary to measure and model variables W in order to exclude them as potentially biasing variables if the investigation focuses on groups selected on V.</description><identifier>ISSN: 0007-1102</identifier><identifier>EISSN: 2044-8317</identifier><identifier>DOI: 10.1348/000711003770480020</identifier><identifier>PMID: 14633334</identifier><identifier>CODEN: BJMSAK</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Publishing Ltd</publisher><subject>Analysis of Variance ; Bias ; Correlation analysis ; Humans ; Psychological tests ; Psychological Tests - statistics &amp; numerical data ; Psychometrics - statistics &amp; numerical data ; Reproducibility of Results ; Stochastic Processes ; Variables</subject><ispartof>British journal of mathematical &amp; statistical psychology, 2003-11, Vol.56 (2), p.231-248</ispartof><rights>2003 The British Psychological Society</rights><rights>Copyright British Psychological Society Nov 2003</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4872-d4357bc4026d71dc7af9780e365d54f642bed78e7834f1f027ace53f0e9dfc203</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1348%2F000711003770480020$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1348%2F000711003770480020$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/14633334$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lubke, Gitta H.</creatorcontrib><creatorcontrib>Dolan, Conor V.</creatorcontrib><creatorcontrib>Kelderman, Henk</creatorcontrib><creatorcontrib>Mellenbergh, Gideon J.</creatorcontrib><title>Weak measurement invariance with respect to unmeasured variables: An implication of strict factorial invariance</title><title>British journal of mathematical &amp; statistical psychology</title><addtitle>Br J Math Stat Psychol</addtitle><description>Measurement bias refers to systematic differences across subpopulations in the relation between observed test scores and the latent variant underlying the test scores. Comparisons of subpopulations with the same score on the latent variable can be expected to have the same observed test score. Measurement invariance is therefore one of the key issues in psychological testing. It has been established that strict factorial invariance (SFI) with respect to a selection variable V almost certainly implies weak measurement invariance with respect to V: given SFI, means and variances of observed scores do not depend on V. It is shown that this result can be extended. SFI in groups derived by selection on V has implications not only for V but also for potentially biasing variables W, if W and the selection variable V and/or if W and the factor underlying the observed test scores are statistically dependent. Given SFI with respect to V and prior knowledge concerning these dependencies, it is not necessary to measure and model variables W in order to exclude them as potentially biasing variables if the investigation focuses on groups selected on V.</description><subject>Analysis of Variance</subject><subject>Bias</subject><subject>Correlation analysis</subject><subject>Humans</subject><subject>Psychological tests</subject><subject>Psychological Tests - statistics &amp; numerical data</subject><subject>Psychometrics - statistics &amp; numerical data</subject><subject>Reproducibility of Results</subject><subject>Stochastic Processes</subject><subject>Variables</subject><issn>0007-1102</issn><issn>2044-8317</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqN0ctuFDEQBVALgUgI_AALZLFg11B-dJfDLgkwQRoegqBZWh53WTjpx2B3E_L3eJgRIFiAN96ce2VXMfZQwFOhtHkGACgEgEIEbQAk3GKHErSujBJ4mx1uQVWEPGD3cr4EELKG5i47ELpR5ehDNq7IXfGeXJ4T9TRMPA5fXYpu8MSv4_SZJ8ob8hOfRj4Pe9jyH2bdUX7OTwYe-00XvZviOPAx8DylWBLB-WksrPut8z67E1yX6cH-PmKfXr28ODuvlu8Wr89OlpXXBmXValXj2muQTYui9ejCMRog1dRtrUOj5ZpaNIRG6SACSHSeahWAjtvgJagj9mTXu0njl5nyZPuYPXWdG2ics0WhTJmB-SeUQiBILQt8_Ae8HOc0lE8U02iUaHRBcod8GnNOFOwmxd6lGyvAbpdm_15aCT3aN8_rntpfkf2WCsAduI4d3fxHpT198_G9ENtHV7tkzBN9-5l06co2qLC2q7cLu_xw0bxYnJ7blfoOTACw8Q</recordid><startdate>200311</startdate><enddate>200311</enddate><creator>Lubke, Gitta H.</creator><creator>Dolan, Conor V.</creator><creator>Kelderman, Henk</creator><creator>Mellenbergh, Gideon J.</creator><general>Blackwell Publishing Ltd</general><general>British Psychological Society</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88G</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8FE</scope><scope>8FG</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>K9.</scope><scope>L6V</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PADUT</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0X</scope><scope>7TK</scope><scope>7X8</scope></search><sort><creationdate>200311</creationdate><title>Weak measurement invariance with respect to unmeasured variables: An implication of strict factorial invariance</title><author>Lubke, Gitta H. ; Dolan, Conor V. ; Kelderman, Henk ; Mellenbergh, Gideon J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4872-d4357bc4026d71dc7af9780e365d54f642bed78e7834f1f027ace53f0e9dfc203</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Analysis of Variance</topic><topic>Bias</topic><topic>Correlation analysis</topic><topic>Humans</topic><topic>Psychological tests</topic><topic>Psychological Tests - statistics &amp; numerical data</topic><topic>Psychometrics - statistics &amp; numerical data</topic><topic>Reproducibility of Results</topic><topic>Stochastic Processes</topic><topic>Variables</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lubke, Gitta H.</creatorcontrib><creatorcontrib>Dolan, Conor V.</creatorcontrib><creatorcontrib>Kelderman, Henk</creatorcontrib><creatorcontrib>Mellenbergh, Gideon J.</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Engineering Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Psychology</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Research Library China</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><collection>Neurosciences Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>British journal of mathematical &amp; statistical psychology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lubke, Gitta H.</au><au>Dolan, Conor V.</au><au>Kelderman, Henk</au><au>Mellenbergh, Gideon J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Weak measurement invariance with respect to unmeasured variables: An implication of strict factorial invariance</atitle><jtitle>British journal of mathematical &amp; statistical psychology</jtitle><addtitle>Br J Math Stat Psychol</addtitle><date>2003-11</date><risdate>2003</risdate><volume>56</volume><issue>2</issue><spage>231</spage><epage>248</epage><pages>231-248</pages><issn>0007-1102</issn><eissn>2044-8317</eissn><coden>BJMSAK</coden><abstract>Measurement bias refers to systematic differences across subpopulations in the relation between observed test scores and the latent variant underlying the test scores. Comparisons of subpopulations with the same score on the latent variable can be expected to have the same observed test score. Measurement invariance is therefore one of the key issues in psychological testing. It has been established that strict factorial invariance (SFI) with respect to a selection variable V almost certainly implies weak measurement invariance with respect to V: given SFI, means and variances of observed scores do not depend on V. It is shown that this result can be extended. SFI in groups derived by selection on V has implications not only for V but also for potentially biasing variables W, if W and the selection variable V and/or if W and the factor underlying the observed test scores are statistically dependent. Given SFI with respect to V and prior knowledge concerning these dependencies, it is not necessary to measure and model variables W in order to exclude them as potentially biasing variables if the investigation focuses on groups selected on V.</abstract><cop>Oxford, UK</cop><pub>Blackwell Publishing Ltd</pub><pmid>14633334</pmid><doi>10.1348/000711003770480020</doi><tpages>18</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0007-1102
ispartof British journal of mathematical & statistical psychology, 2003-11, Vol.56 (2), p.231-248
issn 0007-1102
2044-8317
language eng
recordid cdi_proquest_miscellaneous_71386338
source MEDLINE; Wiley Online Library Journals Frontfile Complete
subjects Analysis of Variance
Bias
Correlation analysis
Humans
Psychological tests
Psychological Tests - statistics & numerical data
Psychometrics - statistics & numerical data
Reproducibility of Results
Stochastic Processes
Variables
title Weak measurement invariance with respect to unmeasured variables: An implication of strict factorial invariance
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T01%3A13%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Weak%20measurement%20invariance%20with%20respect%20to%20unmeasured%20variables:%20An%20implication%20of%20strict%20factorial%20invariance&rft.jtitle=British%20journal%20of%20mathematical%20&%20statistical%20psychology&rft.au=Lubke,%20Gitta%20H.&rft.date=2003-11&rft.volume=56&rft.issue=2&rft.spage=231&rft.epage=248&rft.pages=231-248&rft.issn=0007-1102&rft.eissn=2044-8317&rft.coden=BJMSAK&rft_id=info:doi/10.1348/000711003770480020&rft_dat=%3Cproquest_cross%3E522508461%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=216472784&rft_id=info:pmid/14633334&rfr_iscdi=true