Weak measurement invariance with respect to unmeasured variables: An implication of strict factorial invariance
Measurement bias refers to systematic differences across subpopulations in the relation between observed test scores and the latent variant underlying the test scores. Comparisons of subpopulations with the same score on the latent variable can be expected to have the same observed test score. Measu...
Gespeichert in:
Veröffentlicht in: | British journal of mathematical & statistical psychology 2003-11, Vol.56 (2), p.231-248 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 248 |
---|---|
container_issue | 2 |
container_start_page | 231 |
container_title | British journal of mathematical & statistical psychology |
container_volume | 56 |
creator | Lubke, Gitta H. Dolan, Conor V. Kelderman, Henk Mellenbergh, Gideon J. |
description | Measurement bias refers to systematic differences across subpopulations in the relation between observed test scores and the latent variant underlying the test scores. Comparisons of subpopulations with the same score on the latent variable can be expected to have the same observed test score. Measurement invariance is therefore one of the key issues in psychological testing. It has been established that strict factorial invariance (SFI) with respect to a selection variable V almost certainly implies weak measurement invariance with respect to V: given SFI, means and variances of observed scores do not depend on V. It is shown that this result can be extended. SFI in groups derived by selection on V has implications not only for V but also for potentially biasing variables W, if W and the selection variable V and/or if W and the factor underlying the observed test scores are statistically dependent. Given SFI with respect to V and prior knowledge concerning these dependencies, it is not necessary to measure and model variables W in order to exclude them as potentially biasing variables if the investigation focuses on groups selected on V. |
doi_str_mv | 10.1348/000711003770480020 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_71386338</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>522508461</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4872-d4357bc4026d71dc7af9780e365d54f642bed78e7834f1f027ace53f0e9dfc203</originalsourceid><addsrcrecordid>eNqN0ctuFDEQBVALgUgI_AALZLFg11B-dJfDLgkwQRoegqBZWh53WTjpx2B3E_L3eJgRIFiAN96ce2VXMfZQwFOhtHkGACgEgEIEbQAk3GKHErSujBJ4mx1uQVWEPGD3cr4EELKG5i47ELpR5ehDNq7IXfGeXJ4T9TRMPA5fXYpu8MSv4_SZJ8ob8hOfRj4Pe9jyH2bdUX7OTwYe-00XvZviOPAx8DylWBLB-WksrPut8z67E1yX6cH-PmKfXr28ODuvlu8Wr89OlpXXBmXValXj2muQTYui9ejCMRog1dRtrUOj5ZpaNIRG6SACSHSeahWAjtvgJagj9mTXu0njl5nyZPuYPXWdG2ics0WhTJmB-SeUQiBILQt8_Ae8HOc0lE8U02iUaHRBcod8GnNOFOwmxd6lGyvAbpdm_15aCT3aN8_rntpfkf2WCsAduI4d3fxHpT198_G9ENtHV7tkzBN9-5l06co2qLC2q7cLu_xw0bxYnJ7blfoOTACw8Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>216472784</pqid></control><display><type>article</type><title>Weak measurement invariance with respect to unmeasured variables: An implication of strict factorial invariance</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Lubke, Gitta H. ; Dolan, Conor V. ; Kelderman, Henk ; Mellenbergh, Gideon J.</creator><creatorcontrib>Lubke, Gitta H. ; Dolan, Conor V. ; Kelderman, Henk ; Mellenbergh, Gideon J.</creatorcontrib><description>Measurement bias refers to systematic differences across subpopulations in the relation between observed test scores and the latent variant underlying the test scores. Comparisons of subpopulations with the same score on the latent variable can be expected to have the same observed test score. Measurement invariance is therefore one of the key issues in psychological testing. It has been established that strict factorial invariance (SFI) with respect to a selection variable V almost certainly implies weak measurement invariance with respect to V: given SFI, means and variances of observed scores do not depend on V. It is shown that this result can be extended. SFI in groups derived by selection on V has implications not only for V but also for potentially biasing variables W, if W and the selection variable V and/or if W and the factor underlying the observed test scores are statistically dependent. Given SFI with respect to V and prior knowledge concerning these dependencies, it is not necessary to measure and model variables W in order to exclude them as potentially biasing variables if the investigation focuses on groups selected on V.</description><identifier>ISSN: 0007-1102</identifier><identifier>EISSN: 2044-8317</identifier><identifier>DOI: 10.1348/000711003770480020</identifier><identifier>PMID: 14633334</identifier><identifier>CODEN: BJMSAK</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Publishing Ltd</publisher><subject>Analysis of Variance ; Bias ; Correlation analysis ; Humans ; Psychological tests ; Psychological Tests - statistics & numerical data ; Psychometrics - statistics & numerical data ; Reproducibility of Results ; Stochastic Processes ; Variables</subject><ispartof>British journal of mathematical & statistical psychology, 2003-11, Vol.56 (2), p.231-248</ispartof><rights>2003 The British Psychological Society</rights><rights>Copyright British Psychological Society Nov 2003</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4872-d4357bc4026d71dc7af9780e365d54f642bed78e7834f1f027ace53f0e9dfc203</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1348%2F000711003770480020$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1348%2F000711003770480020$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/14633334$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lubke, Gitta H.</creatorcontrib><creatorcontrib>Dolan, Conor V.</creatorcontrib><creatorcontrib>Kelderman, Henk</creatorcontrib><creatorcontrib>Mellenbergh, Gideon J.</creatorcontrib><title>Weak measurement invariance with respect to unmeasured variables: An implication of strict factorial invariance</title><title>British journal of mathematical & statistical psychology</title><addtitle>Br J Math Stat Psychol</addtitle><description>Measurement bias refers to systematic differences across subpopulations in the relation between observed test scores and the latent variant underlying the test scores. Comparisons of subpopulations with the same score on the latent variable can be expected to have the same observed test score. Measurement invariance is therefore one of the key issues in psychological testing. It has been established that strict factorial invariance (SFI) with respect to a selection variable V almost certainly implies weak measurement invariance with respect to V: given SFI, means and variances of observed scores do not depend on V. It is shown that this result can be extended. SFI in groups derived by selection on V has implications not only for V but also for potentially biasing variables W, if W and the selection variable V and/or if W and the factor underlying the observed test scores are statistically dependent. Given SFI with respect to V and prior knowledge concerning these dependencies, it is not necessary to measure and model variables W in order to exclude them as potentially biasing variables if the investigation focuses on groups selected on V.</description><subject>Analysis of Variance</subject><subject>Bias</subject><subject>Correlation analysis</subject><subject>Humans</subject><subject>Psychological tests</subject><subject>Psychological Tests - statistics & numerical data</subject><subject>Psychometrics - statistics & numerical data</subject><subject>Reproducibility of Results</subject><subject>Stochastic Processes</subject><subject>Variables</subject><issn>0007-1102</issn><issn>2044-8317</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqN0ctuFDEQBVALgUgI_AALZLFg11B-dJfDLgkwQRoegqBZWh53WTjpx2B3E_L3eJgRIFiAN96ce2VXMfZQwFOhtHkGACgEgEIEbQAk3GKHErSujBJ4mx1uQVWEPGD3cr4EELKG5i47ELpR5ehDNq7IXfGeXJ4T9TRMPA5fXYpu8MSv4_SZJ8ob8hOfRj4Pe9jyH2bdUX7OTwYe-00XvZviOPAx8DylWBLB-WksrPut8z67E1yX6cH-PmKfXr28ODuvlu8Wr89OlpXXBmXValXj2muQTYui9ejCMRog1dRtrUOj5ZpaNIRG6SACSHSeahWAjtvgJagj9mTXu0njl5nyZPuYPXWdG2ics0WhTJmB-SeUQiBILQt8_Ae8HOc0lE8U02iUaHRBcod8GnNOFOwmxd6lGyvAbpdm_15aCT3aN8_rntpfkf2WCsAduI4d3fxHpT198_G9ENtHV7tkzBN9-5l06co2qLC2q7cLu_xw0bxYnJ7blfoOTACw8Q</recordid><startdate>200311</startdate><enddate>200311</enddate><creator>Lubke, Gitta H.</creator><creator>Dolan, Conor V.</creator><creator>Kelderman, Henk</creator><creator>Mellenbergh, Gideon J.</creator><general>Blackwell Publishing Ltd</general><general>British Psychological Society</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88G</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8FE</scope><scope>8FG</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>K9.</scope><scope>L6V</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PADUT</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0X</scope><scope>7TK</scope><scope>7X8</scope></search><sort><creationdate>200311</creationdate><title>Weak measurement invariance with respect to unmeasured variables: An implication of strict factorial invariance</title><author>Lubke, Gitta H. ; Dolan, Conor V. ; Kelderman, Henk ; Mellenbergh, Gideon J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4872-d4357bc4026d71dc7af9780e365d54f642bed78e7834f1f027ace53f0e9dfc203</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Analysis of Variance</topic><topic>Bias</topic><topic>Correlation analysis</topic><topic>Humans</topic><topic>Psychological tests</topic><topic>Psychological Tests - statistics & numerical data</topic><topic>Psychometrics - statistics & numerical data</topic><topic>Reproducibility of Results</topic><topic>Stochastic Processes</topic><topic>Variables</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lubke, Gitta H.</creatorcontrib><creatorcontrib>Dolan, Conor V.</creatorcontrib><creatorcontrib>Kelderman, Henk</creatorcontrib><creatorcontrib>Mellenbergh, Gideon J.</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Engineering Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Psychology</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Research Library China</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><collection>Neurosciences Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>British journal of mathematical & statistical psychology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lubke, Gitta H.</au><au>Dolan, Conor V.</au><au>Kelderman, Henk</au><au>Mellenbergh, Gideon J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Weak measurement invariance with respect to unmeasured variables: An implication of strict factorial invariance</atitle><jtitle>British journal of mathematical & statistical psychology</jtitle><addtitle>Br J Math Stat Psychol</addtitle><date>2003-11</date><risdate>2003</risdate><volume>56</volume><issue>2</issue><spage>231</spage><epage>248</epage><pages>231-248</pages><issn>0007-1102</issn><eissn>2044-8317</eissn><coden>BJMSAK</coden><abstract>Measurement bias refers to systematic differences across subpopulations in the relation between observed test scores and the latent variant underlying the test scores. Comparisons of subpopulations with the same score on the latent variable can be expected to have the same observed test score. Measurement invariance is therefore one of the key issues in psychological testing. It has been established that strict factorial invariance (SFI) with respect to a selection variable V almost certainly implies weak measurement invariance with respect to V: given SFI, means and variances of observed scores do not depend on V. It is shown that this result can be extended. SFI in groups derived by selection on V has implications not only for V but also for potentially biasing variables W, if W and the selection variable V and/or if W and the factor underlying the observed test scores are statistically dependent. Given SFI with respect to V and prior knowledge concerning these dependencies, it is not necessary to measure and model variables W in order to exclude them as potentially biasing variables if the investigation focuses on groups selected on V.</abstract><cop>Oxford, UK</cop><pub>Blackwell Publishing Ltd</pub><pmid>14633334</pmid><doi>10.1348/000711003770480020</doi><tpages>18</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0007-1102 |
ispartof | British journal of mathematical & statistical psychology, 2003-11, Vol.56 (2), p.231-248 |
issn | 0007-1102 2044-8317 |
language | eng |
recordid | cdi_proquest_miscellaneous_71386338 |
source | MEDLINE; Wiley Online Library Journals Frontfile Complete |
subjects | Analysis of Variance Bias Correlation analysis Humans Psychological tests Psychological Tests - statistics & numerical data Psychometrics - statistics & numerical data Reproducibility of Results Stochastic Processes Variables |
title | Weak measurement invariance with respect to unmeasured variables: An implication of strict factorial invariance |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T01%3A13%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Weak%20measurement%20invariance%20with%20respect%20to%20unmeasured%20variables:%20An%20implication%20of%20strict%20factorial%20invariance&rft.jtitle=British%20journal%20of%20mathematical%20&%20statistical%20psychology&rft.au=Lubke,%20Gitta%20H.&rft.date=2003-11&rft.volume=56&rft.issue=2&rft.spage=231&rft.epage=248&rft.pages=231-248&rft.issn=0007-1102&rft.eissn=2044-8317&rft.coden=BJMSAK&rft_id=info:doi/10.1348/000711003770480020&rft_dat=%3Cproquest_cross%3E522508461%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=216472784&rft_id=info:pmid/14633334&rfr_iscdi=true |