Iminosugar Glycosidase Inhibitors:  Structural and Thermodynamic Dissection of the Binding of Isofagomine and 1-Deoxynojirimycin to β-Glucosidases

The design and synthesis of transition-state mimics reflects the growing need both to understand enzymatic catalysis and to influence strategies for therapeutic intervention. Iminosugars are among the most potent inhibitors of glycosidases. Here, the binding of 1-deoxynojirimycin and (+)-isofagomine...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the American Chemical Society 2003-11, Vol.125 (47), p.14313-14323
Hauptverfasser: Zechel, David L, Boraston, Alisdair B, Gloster, Tracey, Boraston, Catherine M, Macdonald, James M, Tilbrook, D. Matthew G, Stick, Robert V, Davies, Gideon J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 14323
container_issue 47
container_start_page 14313
container_title Journal of the American Chemical Society
container_volume 125
creator Zechel, David L
Boraston, Alisdair B
Gloster, Tracey
Boraston, Catherine M
Macdonald, James M
Tilbrook, D. Matthew G
Stick, Robert V
Davies, Gideon J
description The design and synthesis of transition-state mimics reflects the growing need both to understand enzymatic catalysis and to influence strategies for therapeutic intervention. Iminosugars are among the most potent inhibitors of glycosidases. Here, the binding of 1-deoxynojirimycin and (+)-isofagomine to the “family GH-1” β-glucosidase of Thermotoga maritima is investigated by kinetic analysis, isothermal titration calorimetry, and X-ray crystallography. The binding of both of these iminosugar inhibitors is driven by a large and favorable enthalpy. The greater inhibitory power of isofagomine, relative to 1-deoxynojirimycin, however, resides in its significantly more favorable entropy; indeed the differing thermodynamic signatures of these inhibitors are further highlighted by the markedly different heat capacity values for binding. The pH dependence of catalysis and of inhibition suggests that the inhibitory species are protonated inhibitors bound to enzymes whose acid/base and nucleophile are ionized, while calorimetry indicates that one proton is released from the enzyme upon binding at the pH optimum of catalysis (pH 5.8). Given that these results contradict earlier proposals that the binding of racemic isofagomine to sweet almond β-glucosidase was entropically driven (Bülow, A. et al. J. Am. Chem. Soc. 2000, 122, 8567−8568), we reinvestigated the binding of 1-deoxynojirimycin and isofagomine to the sweet almond enzyme. Calorimetry confirms that the binding of isofagomine to sweet almond β-glucosidases is, as observed for the T. maritima enzyme, driven by a large favorable enthalpy. The crystallographic structures of the native T. maritima β-glucosidase, and its complexes with isofagomine and 1-deoxynojirimycin, all at ∼2.1 Å resolution, reveal that additional ordering of bound solvent may present an entropic penalty to 1-deoxynojirimycin binding that does not penalize isofagomine.
doi_str_mv 10.1021/ja036833h
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_71382119</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>71382119</sourcerecordid><originalsourceid>FETCH-LOGICAL-a379t-5323f7b8020e7f061a1478a1004f90024076ea46a470c579a44d458144438d163</originalsourceid><addsrcrecordid>eNptkcFuEzEQhlcIREPhwAsgX0DisGCvvWuHG7Q0RI1EpYSzNfF6E4ddu_XsSt0bVx6AF-FBeAieBJeE5sJpNJpv_pl_JsueM_qG0YK93QHlleJ8-yCbsLKgecmK6mE2oZQWuVQVP8meIO5SKgrFHmcnTFSFKBWdZD_mnfMBhw1EMmtHE9DVgJbM_datXR8ivvv97TtZ9nEw_RChJeBrstra2IV69NA5Q84dojW9C56EhvRbSz44Xzu_uUvnGBrYhDTF_m1l-bkNt6MPOxddNxrnSR_Ir5_5rB3-Tcen2aMGWrTPDvE0-3LxcXX2KV98ns3P3i9y4HLa5yUveCPXihbUyoZWDJiQCljy2UyTd0FlZUFUICQ1pZyCEHWyzYQQXNWs4qfZq73udQw3g8Vedw6NbVvwNgyoJeOqYGyawNd70MSAGG2jr9P2EEfNqL77gb7_QWJfHESHdWfrI3k4egJeHgBAA20TwRuHR67kjCmpEpfvOYe9vb2vQ_yqK8llqVdXSy0v5OVydXmlF0ddMKh3YYg-3e4_C_4B70Kr-g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>71382119</pqid></control><display><type>article</type><title>Iminosugar Glycosidase Inhibitors:  Structural and Thermodynamic Dissection of the Binding of Isofagomine and 1-Deoxynojirimycin to β-Glucosidases</title><source>MEDLINE</source><source>ACS Journals</source><creator>Zechel, David L ; Boraston, Alisdair B ; Gloster, Tracey ; Boraston, Catherine M ; Macdonald, James M ; Tilbrook, D. Matthew G ; Stick, Robert V ; Davies, Gideon J</creator><creatorcontrib>Zechel, David L ; Boraston, Alisdair B ; Gloster, Tracey ; Boraston, Catherine M ; Macdonald, James M ; Tilbrook, D. Matthew G ; Stick, Robert V ; Davies, Gideon J</creatorcontrib><description>The design and synthesis of transition-state mimics reflects the growing need both to understand enzymatic catalysis and to influence strategies for therapeutic intervention. Iminosugars are among the most potent inhibitors of glycosidases. Here, the binding of 1-deoxynojirimycin and (+)-isofagomine to the “family GH-1” β-glucosidase of Thermotoga maritima is investigated by kinetic analysis, isothermal titration calorimetry, and X-ray crystallography. The binding of both of these iminosugar inhibitors is driven by a large and favorable enthalpy. The greater inhibitory power of isofagomine, relative to 1-deoxynojirimycin, however, resides in its significantly more favorable entropy; indeed the differing thermodynamic signatures of these inhibitors are further highlighted by the markedly different heat capacity values for binding. The pH dependence of catalysis and of inhibition suggests that the inhibitory species are protonated inhibitors bound to enzymes whose acid/base and nucleophile are ionized, while calorimetry indicates that one proton is released from the enzyme upon binding at the pH optimum of catalysis (pH 5.8). Given that these results contradict earlier proposals that the binding of racemic isofagomine to sweet almond β-glucosidase was entropically driven (Bülow, A. et al. J. Am. Chem. Soc. 2000, 122, 8567−8568), we reinvestigated the binding of 1-deoxynojirimycin and isofagomine to the sweet almond enzyme. Calorimetry confirms that the binding of isofagomine to sweet almond β-glucosidases is, as observed for the T. maritima enzyme, driven by a large favorable enthalpy. The crystallographic structures of the native T. maritima β-glucosidase, and its complexes with isofagomine and 1-deoxynojirimycin, all at ∼2.1 Å resolution, reveal that additional ordering of bound solvent may present an entropic penalty to 1-deoxynojirimycin binding that does not penalize isofagomine.</description><identifier>ISSN: 0002-7863</identifier><identifier>EISSN: 1520-5126</identifier><identifier>DOI: 10.1021/ja036833h</identifier><identifier>PMID: 14624580</identifier><identifier>CODEN: JACSAT</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>1-Deoxynojirimycin - chemistry ; 1-Deoxynojirimycin - metabolism ; 1-Deoxynojirimycin - pharmacology ; beta-Glucosidase - antagonists &amp; inhibitors ; beta-Glucosidase - chemistry ; beta-Glucosidase - metabolism ; Biological and medical sciences ; Calorimetry ; Crystallography, X-Ray ; Enzyme Inhibitors - chemistry ; Enzyme Inhibitors - metabolism ; Enzyme Inhibitors - pharmacology ; Fundamental and applied biological sciences. Psychology ; Hydrogen-Ion Concentration ; Imino Pyranoses ; Interactions. Associations ; Intermolecular phenomena ; Kinetics ; Models, Molecular ; Molecular biophysics ; Piperidines - chemistry ; Piperidines - metabolism ; Piperidines - pharmacology ; Thermodynamics ; Thermotoga maritima - enzymology</subject><ispartof>Journal of the American Chemical Society, 2003-11, Vol.125 (47), p.14313-14323</ispartof><rights>Copyright © 2003 American Chemical Society</rights><rights>2004 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a379t-5323f7b8020e7f061a1478a1004f90024076ea46a470c579a44d458144438d163</citedby><cites>FETCH-LOGICAL-a379t-5323f7b8020e7f061a1478a1004f90024076ea46a470c579a44d458144438d163</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/ja036833h$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/ja036833h$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=15311878$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/14624580$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zechel, David L</creatorcontrib><creatorcontrib>Boraston, Alisdair B</creatorcontrib><creatorcontrib>Gloster, Tracey</creatorcontrib><creatorcontrib>Boraston, Catherine M</creatorcontrib><creatorcontrib>Macdonald, James M</creatorcontrib><creatorcontrib>Tilbrook, D. Matthew G</creatorcontrib><creatorcontrib>Stick, Robert V</creatorcontrib><creatorcontrib>Davies, Gideon J</creatorcontrib><title>Iminosugar Glycosidase Inhibitors:  Structural and Thermodynamic Dissection of the Binding of Isofagomine and 1-Deoxynojirimycin to β-Glucosidases</title><title>Journal of the American Chemical Society</title><addtitle>J. Am. Chem. Soc</addtitle><description>The design and synthesis of transition-state mimics reflects the growing need both to understand enzymatic catalysis and to influence strategies for therapeutic intervention. Iminosugars are among the most potent inhibitors of glycosidases. Here, the binding of 1-deoxynojirimycin and (+)-isofagomine to the “family GH-1” β-glucosidase of Thermotoga maritima is investigated by kinetic analysis, isothermal titration calorimetry, and X-ray crystallography. The binding of both of these iminosugar inhibitors is driven by a large and favorable enthalpy. The greater inhibitory power of isofagomine, relative to 1-deoxynojirimycin, however, resides in its significantly more favorable entropy; indeed the differing thermodynamic signatures of these inhibitors are further highlighted by the markedly different heat capacity values for binding. The pH dependence of catalysis and of inhibition suggests that the inhibitory species are protonated inhibitors bound to enzymes whose acid/base and nucleophile are ionized, while calorimetry indicates that one proton is released from the enzyme upon binding at the pH optimum of catalysis (pH 5.8). Given that these results contradict earlier proposals that the binding of racemic isofagomine to sweet almond β-glucosidase was entropically driven (Bülow, A. et al. J. Am. Chem. Soc. 2000, 122, 8567−8568), we reinvestigated the binding of 1-deoxynojirimycin and isofagomine to the sweet almond enzyme. Calorimetry confirms that the binding of isofagomine to sweet almond β-glucosidases is, as observed for the T. maritima enzyme, driven by a large favorable enthalpy. The crystallographic structures of the native T. maritima β-glucosidase, and its complexes with isofagomine and 1-deoxynojirimycin, all at ∼2.1 Å resolution, reveal that additional ordering of bound solvent may present an entropic penalty to 1-deoxynojirimycin binding that does not penalize isofagomine.</description><subject>1-Deoxynojirimycin - chemistry</subject><subject>1-Deoxynojirimycin - metabolism</subject><subject>1-Deoxynojirimycin - pharmacology</subject><subject>beta-Glucosidase - antagonists &amp; inhibitors</subject><subject>beta-Glucosidase - chemistry</subject><subject>beta-Glucosidase - metabolism</subject><subject>Biological and medical sciences</subject><subject>Calorimetry</subject><subject>Crystallography, X-Ray</subject><subject>Enzyme Inhibitors - chemistry</subject><subject>Enzyme Inhibitors - metabolism</subject><subject>Enzyme Inhibitors - pharmacology</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Hydrogen-Ion Concentration</subject><subject>Imino Pyranoses</subject><subject>Interactions. Associations</subject><subject>Intermolecular phenomena</subject><subject>Kinetics</subject><subject>Models, Molecular</subject><subject>Molecular biophysics</subject><subject>Piperidines - chemistry</subject><subject>Piperidines - metabolism</subject><subject>Piperidines - pharmacology</subject><subject>Thermodynamics</subject><subject>Thermotoga maritima - enzymology</subject><issn>0002-7863</issn><issn>1520-5126</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNptkcFuEzEQhlcIREPhwAsgX0DisGCvvWuHG7Q0RI1EpYSzNfF6E4ddu_XsSt0bVx6AF-FBeAieBJeE5sJpNJpv_pl_JsueM_qG0YK93QHlleJ8-yCbsLKgecmK6mE2oZQWuVQVP8meIO5SKgrFHmcnTFSFKBWdZD_mnfMBhw1EMmtHE9DVgJbM_datXR8ivvv97TtZ9nEw_RChJeBrstra2IV69NA5Q84dojW9C56EhvRbSz44Xzu_uUvnGBrYhDTF_m1l-bkNt6MPOxddNxrnSR_Ir5_5rB3-Tcen2aMGWrTPDvE0-3LxcXX2KV98ns3P3i9y4HLa5yUveCPXihbUyoZWDJiQCljy2UyTd0FlZUFUICQ1pZyCEHWyzYQQXNWs4qfZq73udQw3g8Vedw6NbVvwNgyoJeOqYGyawNd70MSAGG2jr9P2EEfNqL77gb7_QWJfHESHdWfrI3k4egJeHgBAA20TwRuHR67kjCmpEpfvOYe9vb2vQ_yqK8llqVdXSy0v5OVydXmlF0ddMKh3YYg-3e4_C_4B70Kr-g</recordid><startdate>20031126</startdate><enddate>20031126</enddate><creator>Zechel, David L</creator><creator>Boraston, Alisdair B</creator><creator>Gloster, Tracey</creator><creator>Boraston, Catherine M</creator><creator>Macdonald, James M</creator><creator>Tilbrook, D. Matthew G</creator><creator>Stick, Robert V</creator><creator>Davies, Gideon J</creator><general>American Chemical Society</general><scope>BSCLL</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20031126</creationdate><title>Iminosugar Glycosidase Inhibitors:  Structural and Thermodynamic Dissection of the Binding of Isofagomine and 1-Deoxynojirimycin to β-Glucosidases</title><author>Zechel, David L ; Boraston, Alisdair B ; Gloster, Tracey ; Boraston, Catherine M ; Macdonald, James M ; Tilbrook, D. Matthew G ; Stick, Robert V ; Davies, Gideon J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a379t-5323f7b8020e7f061a1478a1004f90024076ea46a470c579a44d458144438d163</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>1-Deoxynojirimycin - chemistry</topic><topic>1-Deoxynojirimycin - metabolism</topic><topic>1-Deoxynojirimycin - pharmacology</topic><topic>beta-Glucosidase - antagonists &amp; inhibitors</topic><topic>beta-Glucosidase - chemistry</topic><topic>beta-Glucosidase - metabolism</topic><topic>Biological and medical sciences</topic><topic>Calorimetry</topic><topic>Crystallography, X-Ray</topic><topic>Enzyme Inhibitors - chemistry</topic><topic>Enzyme Inhibitors - metabolism</topic><topic>Enzyme Inhibitors - pharmacology</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Hydrogen-Ion Concentration</topic><topic>Imino Pyranoses</topic><topic>Interactions. Associations</topic><topic>Intermolecular phenomena</topic><topic>Kinetics</topic><topic>Models, Molecular</topic><topic>Molecular biophysics</topic><topic>Piperidines - chemistry</topic><topic>Piperidines - metabolism</topic><topic>Piperidines - pharmacology</topic><topic>Thermodynamics</topic><topic>Thermotoga maritima - enzymology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zechel, David L</creatorcontrib><creatorcontrib>Boraston, Alisdair B</creatorcontrib><creatorcontrib>Gloster, Tracey</creatorcontrib><creatorcontrib>Boraston, Catherine M</creatorcontrib><creatorcontrib>Macdonald, James M</creatorcontrib><creatorcontrib>Tilbrook, D. Matthew G</creatorcontrib><creatorcontrib>Stick, Robert V</creatorcontrib><creatorcontrib>Davies, Gideon J</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of the American Chemical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zechel, David L</au><au>Boraston, Alisdair B</au><au>Gloster, Tracey</au><au>Boraston, Catherine M</au><au>Macdonald, James M</au><au>Tilbrook, D. Matthew G</au><au>Stick, Robert V</au><au>Davies, Gideon J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Iminosugar Glycosidase Inhibitors:  Structural and Thermodynamic Dissection of the Binding of Isofagomine and 1-Deoxynojirimycin to β-Glucosidases</atitle><jtitle>Journal of the American Chemical Society</jtitle><addtitle>J. Am. Chem. Soc</addtitle><date>2003-11-26</date><risdate>2003</risdate><volume>125</volume><issue>47</issue><spage>14313</spage><epage>14323</epage><pages>14313-14323</pages><issn>0002-7863</issn><eissn>1520-5126</eissn><coden>JACSAT</coden><abstract>The design and synthesis of transition-state mimics reflects the growing need both to understand enzymatic catalysis and to influence strategies for therapeutic intervention. Iminosugars are among the most potent inhibitors of glycosidases. Here, the binding of 1-deoxynojirimycin and (+)-isofagomine to the “family GH-1” β-glucosidase of Thermotoga maritima is investigated by kinetic analysis, isothermal titration calorimetry, and X-ray crystallography. The binding of both of these iminosugar inhibitors is driven by a large and favorable enthalpy. The greater inhibitory power of isofagomine, relative to 1-deoxynojirimycin, however, resides in its significantly more favorable entropy; indeed the differing thermodynamic signatures of these inhibitors are further highlighted by the markedly different heat capacity values for binding. The pH dependence of catalysis and of inhibition suggests that the inhibitory species are protonated inhibitors bound to enzymes whose acid/base and nucleophile are ionized, while calorimetry indicates that one proton is released from the enzyme upon binding at the pH optimum of catalysis (pH 5.8). Given that these results contradict earlier proposals that the binding of racemic isofagomine to sweet almond β-glucosidase was entropically driven (Bülow, A. et al. J. Am. Chem. Soc. 2000, 122, 8567−8568), we reinvestigated the binding of 1-deoxynojirimycin and isofagomine to the sweet almond enzyme. Calorimetry confirms that the binding of isofagomine to sweet almond β-glucosidases is, as observed for the T. maritima enzyme, driven by a large favorable enthalpy. The crystallographic structures of the native T. maritima β-glucosidase, and its complexes with isofagomine and 1-deoxynojirimycin, all at ∼2.1 Å resolution, reveal that additional ordering of bound solvent may present an entropic penalty to 1-deoxynojirimycin binding that does not penalize isofagomine.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><pmid>14624580</pmid><doi>10.1021/ja036833h</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0002-7863
ispartof Journal of the American Chemical Society, 2003-11, Vol.125 (47), p.14313-14323
issn 0002-7863
1520-5126
language eng
recordid cdi_proquest_miscellaneous_71382119
source MEDLINE; ACS Journals
subjects 1-Deoxynojirimycin - chemistry
1-Deoxynojirimycin - metabolism
1-Deoxynojirimycin - pharmacology
beta-Glucosidase - antagonists & inhibitors
beta-Glucosidase - chemistry
beta-Glucosidase - metabolism
Biological and medical sciences
Calorimetry
Crystallography, X-Ray
Enzyme Inhibitors - chemistry
Enzyme Inhibitors - metabolism
Enzyme Inhibitors - pharmacology
Fundamental and applied biological sciences. Psychology
Hydrogen-Ion Concentration
Imino Pyranoses
Interactions. Associations
Intermolecular phenomena
Kinetics
Models, Molecular
Molecular biophysics
Piperidines - chemistry
Piperidines - metabolism
Piperidines - pharmacology
Thermodynamics
Thermotoga maritima - enzymology
title Iminosugar Glycosidase Inhibitors:  Structural and Thermodynamic Dissection of the Binding of Isofagomine and 1-Deoxynojirimycin to β-Glucosidases
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T18%3A17%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Iminosugar%20Glycosidase%20Inhibitors:%E2%80%89%20Structural%20and%20Thermodynamic%20Dissection%20of%20the%20Binding%20of%20Isofagomine%20and%201-Deoxynojirimycin%20to%20%CE%B2-Glucosidases&rft.jtitle=Journal%20of%20the%20American%20Chemical%20Society&rft.au=Zechel,%20David%20L&rft.date=2003-11-26&rft.volume=125&rft.issue=47&rft.spage=14313&rft.epage=14323&rft.pages=14313-14323&rft.issn=0002-7863&rft.eissn=1520-5126&rft.coden=JACSAT&rft_id=info:doi/10.1021/ja036833h&rft_dat=%3Cproquest_cross%3E71382119%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=71382119&rft_id=info:pmid/14624580&rfr_iscdi=true