A Model for Intracortical Visual Prosthesis Research

:  In the field of visual prosthesis research, it has generally been held that animal models are limited to testing the safety of implantable hardware due to the inability of the animal to provide a linguistic report of perceptions. In contrast, vision scientists make extensive use of trained animal...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Artificial organs 2003-11, Vol.27 (11), p.1005-1015
Hauptverfasser: Troyk, Philip, Bak, Martin, Berg, Joshua, Bradley, David, Cogan, Stuart, Erickson, Robert, Kufta, Conrad, McCreery, Douglas, Schmidt, Edward, Towle, Vernon
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1015
container_issue 11
container_start_page 1005
container_title Artificial organs
container_volume 27
creator Troyk, Philip
Bak, Martin
Berg, Joshua
Bradley, David
Cogan, Stuart
Erickson, Robert
Kufta, Conrad
McCreery, Douglas
Schmidt, Edward
Towle, Vernon
description :  In the field of visual prosthesis research, it has generally been held that animal models are limited to testing the safety of implantable hardware due to the inability of the animal to provide a linguistic report of perceptions. In contrast, vision scientists make extensive use of trained animal models to investigate the links between visual stimuli, neural activities, and perception. We describe an animal model for cortical visual prosthesis research in which novel animal psychophysical testing has been employed to compensate for the lack of a linguistic report. One hundred and fifty‐two intracortical microelectrodes were chronically implanted in area V1 of a male macaque. Receptive field mapping was combined with eye‐tracking to develop a reward‐based training procedure. The animal was trained to use electrically induced point‐flash percepts, called phosphenes, in performing a memory saccade task. It is our long‐term goal to use this animal model to investigate stimulation strategies in developing a multichannel sensory cortical interface.
doi_str_mv 10.1046/j.1525-1594.2003.07308.x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_71368152</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>19235071</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5028-c85bb74ffb1434aaf34fe8a56d06cc34a4b4066161e30136ce00b331edf2fa8d3</originalsourceid><addsrcrecordid>eNqNkMtOwzAQRS0EglL4BZQVu4Rx_Ei6YFHxpkAR753lOLZISZtiJ6L9exxSlSWsxrLvGc8chAIMEQbKjyYRZjELMRvQKAYgESQE0mixgXrrh03UA8whZJy-7aBd5yYAkFDg22gHU445w4MeosPgtsp1GZjKBlez2kpV2bpQsgxeCtf4cm8rV79rV7jgQTstrXrfQ1tGlk7vr2ofPZ-fPZ1chjfji6uT4U2oGMRpqFKWZQk1JsOUUCkNoUankvEcuFL-hmZ-HD8J1gQw4UoDZIRgnZvYyDQnfXTY9Z3b6rPRrhbTwildlnKmq8aJxEOpX_jPIB7EhIGP91HaBZXfylltxNwWU2mXAoNo1YqJaA2K1qBo1YoftWLh0YPVH0021fkvuHLpA8dd4Kso9fLfjcVw_NCePB92fOFqvVjz0n4InpCEide7C_E44tdvp2QkBuQb6KqVeg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>19235071</pqid></control><display><type>article</type><title>A Model for Intracortical Visual Prosthesis Research</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Troyk, Philip ; Bak, Martin ; Berg, Joshua ; Bradley, David ; Cogan, Stuart ; Erickson, Robert ; Kufta, Conrad ; McCreery, Douglas ; Schmidt, Edward ; Towle, Vernon</creator><creatorcontrib>Troyk, Philip ; Bak, Martin ; Berg, Joshua ; Bradley, David ; Cogan, Stuart ; Erickson, Robert ; Kufta, Conrad ; McCreery, Douglas ; Schmidt, Edward ; Towle, Vernon</creatorcontrib><description>:  In the field of visual prosthesis research, it has generally been held that animal models are limited to testing the safety of implantable hardware due to the inability of the animal to provide a linguistic report of perceptions. In contrast, vision scientists make extensive use of trained animal models to investigate the links between visual stimuli, neural activities, and perception. We describe an animal model for cortical visual prosthesis research in which novel animal psychophysical testing has been employed to compensate for the lack of a linguistic report. One hundred and fifty‐two intracortical microelectrodes were chronically implanted in area V1 of a male macaque. Receptive field mapping was combined with eye‐tracking to develop a reward‐based training procedure. The animal was trained to use electrically induced point‐flash percepts, called phosphenes, in performing a memory saccade task. It is our long‐term goal to use this animal model to investigate stimulation strategies in developing a multichannel sensory cortical interface.</description><identifier>ISSN: 0160-564X</identifier><identifier>EISSN: 1525-1594</identifier><identifier>DOI: 10.1046/j.1525-1594.2003.07308.x</identifier><identifier>PMID: 14616519</identifier><language>eng</language><publisher>Oxford, UK and Malden, USA: Blackwell Science Inc</publisher><subject>Animal model ; Animals ; Brain Mapping - methods ; Cortical interface ; Electric Stimulation ; electrical stimulation ; Electrodes, Implanted ; Implants, Experimental ; Intracortical microelectrodes ; Macaca ; Macaca mulatta ; Male ; Memory ; Memory - physiology ; Microelectrodes ; Models, Animal ; Perception ; Phosphenes - physiology ; Sensory ; Visual prosthesis</subject><ispartof>Artificial organs, 2003-11, Vol.27 (11), p.1005-1015</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5028-c85bb74ffb1434aaf34fe8a56d06cc34a4b4066161e30136ce00b331edf2fa8d3</citedby><cites>FETCH-LOGICAL-c5028-c85bb74ffb1434aaf34fe8a56d06cc34a4b4066161e30136ce00b331edf2fa8d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1046%2Fj.1525-1594.2003.07308.x$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1046%2Fj.1525-1594.2003.07308.x$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,778,782,1414,27911,27912,45561,45562</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/14616519$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Troyk, Philip</creatorcontrib><creatorcontrib>Bak, Martin</creatorcontrib><creatorcontrib>Berg, Joshua</creatorcontrib><creatorcontrib>Bradley, David</creatorcontrib><creatorcontrib>Cogan, Stuart</creatorcontrib><creatorcontrib>Erickson, Robert</creatorcontrib><creatorcontrib>Kufta, Conrad</creatorcontrib><creatorcontrib>McCreery, Douglas</creatorcontrib><creatorcontrib>Schmidt, Edward</creatorcontrib><creatorcontrib>Towle, Vernon</creatorcontrib><title>A Model for Intracortical Visual Prosthesis Research</title><title>Artificial organs</title><addtitle>Artif Organs</addtitle><description>:  In the field of visual prosthesis research, it has generally been held that animal models are limited to testing the safety of implantable hardware due to the inability of the animal to provide a linguistic report of perceptions. In contrast, vision scientists make extensive use of trained animal models to investigate the links between visual stimuli, neural activities, and perception. We describe an animal model for cortical visual prosthesis research in which novel animal psychophysical testing has been employed to compensate for the lack of a linguistic report. One hundred and fifty‐two intracortical microelectrodes were chronically implanted in area V1 of a male macaque. Receptive field mapping was combined with eye‐tracking to develop a reward‐based training procedure. The animal was trained to use electrically induced point‐flash percepts, called phosphenes, in performing a memory saccade task. It is our long‐term goal to use this animal model to investigate stimulation strategies in developing a multichannel sensory cortical interface.</description><subject>Animal model</subject><subject>Animals</subject><subject>Brain Mapping - methods</subject><subject>Cortical interface</subject><subject>Electric Stimulation</subject><subject>electrical stimulation</subject><subject>Electrodes, Implanted</subject><subject>Implants, Experimental</subject><subject>Intracortical microelectrodes</subject><subject>Macaca</subject><subject>Macaca mulatta</subject><subject>Male</subject><subject>Memory</subject><subject>Memory - physiology</subject><subject>Microelectrodes</subject><subject>Models, Animal</subject><subject>Perception</subject><subject>Phosphenes - physiology</subject><subject>Sensory</subject><subject>Visual prosthesis</subject><issn>0160-564X</issn><issn>1525-1594</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkMtOwzAQRS0EglL4BZQVu4Rx_Ei6YFHxpkAR753lOLZISZtiJ6L9exxSlSWsxrLvGc8chAIMEQbKjyYRZjELMRvQKAYgESQE0mixgXrrh03UA8whZJy-7aBd5yYAkFDg22gHU445w4MeosPgtsp1GZjKBlez2kpV2bpQsgxeCtf4cm8rV79rV7jgQTstrXrfQ1tGlk7vr2ofPZ-fPZ1chjfji6uT4U2oGMRpqFKWZQk1JsOUUCkNoUankvEcuFL-hmZ-HD8J1gQw4UoDZIRgnZvYyDQnfXTY9Z3b6rPRrhbTwildlnKmq8aJxEOpX_jPIB7EhIGP91HaBZXfylltxNwWU2mXAoNo1YqJaA2K1qBo1YoftWLh0YPVH0021fkvuHLpA8dd4Kso9fLfjcVw_NCePB92fOFqvVjz0n4InpCEide7C_E44tdvp2QkBuQb6KqVeg</recordid><startdate>200311</startdate><enddate>200311</enddate><creator>Troyk, Philip</creator><creator>Bak, Martin</creator><creator>Berg, Joshua</creator><creator>Bradley, David</creator><creator>Cogan, Stuart</creator><creator>Erickson, Robert</creator><creator>Kufta, Conrad</creator><creator>McCreery, Douglas</creator><creator>Schmidt, Edward</creator><creator>Towle, Vernon</creator><general>Blackwell Science Inc</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>200311</creationdate><title>A Model for Intracortical Visual Prosthesis Research</title><author>Troyk, Philip ; Bak, Martin ; Berg, Joshua ; Bradley, David ; Cogan, Stuart ; Erickson, Robert ; Kufta, Conrad ; McCreery, Douglas ; Schmidt, Edward ; Towle, Vernon</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5028-c85bb74ffb1434aaf34fe8a56d06cc34a4b4066161e30136ce00b331edf2fa8d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Animal model</topic><topic>Animals</topic><topic>Brain Mapping - methods</topic><topic>Cortical interface</topic><topic>Electric Stimulation</topic><topic>electrical stimulation</topic><topic>Electrodes, Implanted</topic><topic>Implants, Experimental</topic><topic>Intracortical microelectrodes</topic><topic>Macaca</topic><topic>Macaca mulatta</topic><topic>Male</topic><topic>Memory</topic><topic>Memory - physiology</topic><topic>Microelectrodes</topic><topic>Models, Animal</topic><topic>Perception</topic><topic>Phosphenes - physiology</topic><topic>Sensory</topic><topic>Visual prosthesis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Troyk, Philip</creatorcontrib><creatorcontrib>Bak, Martin</creatorcontrib><creatorcontrib>Berg, Joshua</creatorcontrib><creatorcontrib>Bradley, David</creatorcontrib><creatorcontrib>Cogan, Stuart</creatorcontrib><creatorcontrib>Erickson, Robert</creatorcontrib><creatorcontrib>Kufta, Conrad</creatorcontrib><creatorcontrib>McCreery, Douglas</creatorcontrib><creatorcontrib>Schmidt, Edward</creatorcontrib><creatorcontrib>Towle, Vernon</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Artificial organs</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Troyk, Philip</au><au>Bak, Martin</au><au>Berg, Joshua</au><au>Bradley, David</au><au>Cogan, Stuart</au><au>Erickson, Robert</au><au>Kufta, Conrad</au><au>McCreery, Douglas</au><au>Schmidt, Edward</au><au>Towle, Vernon</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Model for Intracortical Visual Prosthesis Research</atitle><jtitle>Artificial organs</jtitle><addtitle>Artif Organs</addtitle><date>2003-11</date><risdate>2003</risdate><volume>27</volume><issue>11</issue><spage>1005</spage><epage>1015</epage><pages>1005-1015</pages><issn>0160-564X</issn><eissn>1525-1594</eissn><abstract>:  In the field of visual prosthesis research, it has generally been held that animal models are limited to testing the safety of implantable hardware due to the inability of the animal to provide a linguistic report of perceptions. In contrast, vision scientists make extensive use of trained animal models to investigate the links between visual stimuli, neural activities, and perception. We describe an animal model for cortical visual prosthesis research in which novel animal psychophysical testing has been employed to compensate for the lack of a linguistic report. One hundred and fifty‐two intracortical microelectrodes were chronically implanted in area V1 of a male macaque. Receptive field mapping was combined with eye‐tracking to develop a reward‐based training procedure. The animal was trained to use electrically induced point‐flash percepts, called phosphenes, in performing a memory saccade task. It is our long‐term goal to use this animal model to investigate stimulation strategies in developing a multichannel sensory cortical interface.</abstract><cop>Oxford, UK and Malden, USA</cop><pub>Blackwell Science Inc</pub><pmid>14616519</pmid><doi>10.1046/j.1525-1594.2003.07308.x</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0160-564X
ispartof Artificial organs, 2003-11, Vol.27 (11), p.1005-1015
issn 0160-564X
1525-1594
language eng
recordid cdi_proquest_miscellaneous_71368152
source MEDLINE; Wiley Online Library Journals Frontfile Complete
subjects Animal model
Animals
Brain Mapping - methods
Cortical interface
Electric Stimulation
electrical stimulation
Electrodes, Implanted
Implants, Experimental
Intracortical microelectrodes
Macaca
Macaca mulatta
Male
Memory
Memory - physiology
Microelectrodes
Models, Animal
Perception
Phosphenes - physiology
Sensory
Visual prosthesis
title A Model for Intracortical Visual Prosthesis Research
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T16%3A05%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Model%20for%20Intracortical%20Visual%20Prosthesis%20Research&rft.jtitle=Artificial%20organs&rft.au=Troyk,%20Philip&rft.date=2003-11&rft.volume=27&rft.issue=11&rft.spage=1005&rft.epage=1015&rft.pages=1005-1015&rft.issn=0160-564X&rft.eissn=1525-1594&rft_id=info:doi/10.1046/j.1525-1594.2003.07308.x&rft_dat=%3Cproquest_cross%3E19235071%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=19235071&rft_id=info:pmid/14616519&rfr_iscdi=true