A Model for Intracortical Visual Prosthesis Research
: In the field of visual prosthesis research, it has generally been held that animal models are limited to testing the safety of implantable hardware due to the inability of the animal to provide a linguistic report of perceptions. In contrast, vision scientists make extensive use of trained animal...
Gespeichert in:
Veröffentlicht in: | Artificial organs 2003-11, Vol.27 (11), p.1005-1015 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1015 |
---|---|
container_issue | 11 |
container_start_page | 1005 |
container_title | Artificial organs |
container_volume | 27 |
creator | Troyk, Philip Bak, Martin Berg, Joshua Bradley, David Cogan, Stuart Erickson, Robert Kufta, Conrad McCreery, Douglas Schmidt, Edward Towle, Vernon |
description | : In the field of visual prosthesis research, it has generally been held that animal models are limited to testing the safety of implantable hardware due to the inability of the animal to provide a linguistic report of perceptions. In contrast, vision scientists make extensive use of trained animal models to investigate the links between visual stimuli, neural activities, and perception. We describe an animal model for cortical visual prosthesis research in which novel animal psychophysical testing has been employed to compensate for the lack of a linguistic report. One hundred and fifty‐two intracortical microelectrodes were chronically implanted in area V1 of a male macaque. Receptive field mapping was combined with eye‐tracking to develop a reward‐based training procedure. The animal was trained to use electrically induced point‐flash percepts, called phosphenes, in performing a memory saccade task. It is our long‐term goal to use this animal model to investigate stimulation strategies in developing a multichannel sensory cortical interface. |
doi_str_mv | 10.1046/j.1525-1594.2003.07308.x |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_71368152</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>19235071</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5028-c85bb74ffb1434aaf34fe8a56d06cc34a4b4066161e30136ce00b331edf2fa8d3</originalsourceid><addsrcrecordid>eNqNkMtOwzAQRS0EglL4BZQVu4Rx_Ei6YFHxpkAR753lOLZISZtiJ6L9exxSlSWsxrLvGc8chAIMEQbKjyYRZjELMRvQKAYgESQE0mixgXrrh03UA8whZJy-7aBd5yYAkFDg22gHU445w4MeosPgtsp1GZjKBlez2kpV2bpQsgxeCtf4cm8rV79rV7jgQTstrXrfQ1tGlk7vr2ofPZ-fPZ1chjfji6uT4U2oGMRpqFKWZQk1JsOUUCkNoUankvEcuFL-hmZ-HD8J1gQw4UoDZIRgnZvYyDQnfXTY9Z3b6rPRrhbTwildlnKmq8aJxEOpX_jPIB7EhIGP91HaBZXfylltxNwWU2mXAoNo1YqJaA2K1qBo1YoftWLh0YPVH0021fkvuHLpA8dd4Kso9fLfjcVw_NCePB92fOFqvVjz0n4InpCEide7C_E44tdvp2QkBuQb6KqVeg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>19235071</pqid></control><display><type>article</type><title>A Model for Intracortical Visual Prosthesis Research</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Troyk, Philip ; Bak, Martin ; Berg, Joshua ; Bradley, David ; Cogan, Stuart ; Erickson, Robert ; Kufta, Conrad ; McCreery, Douglas ; Schmidt, Edward ; Towle, Vernon</creator><creatorcontrib>Troyk, Philip ; Bak, Martin ; Berg, Joshua ; Bradley, David ; Cogan, Stuart ; Erickson, Robert ; Kufta, Conrad ; McCreery, Douglas ; Schmidt, Edward ; Towle, Vernon</creatorcontrib><description>: In the field of visual prosthesis research, it has generally been held that animal models are limited to testing the safety of implantable hardware due to the inability of the animal to provide a linguistic report of perceptions. In contrast, vision scientists make extensive use of trained animal models to investigate the links between visual stimuli, neural activities, and perception. We describe an animal model for cortical visual prosthesis research in which novel animal psychophysical testing has been employed to compensate for the lack of a linguistic report. One hundred and fifty‐two intracortical microelectrodes were chronically implanted in area V1 of a male macaque. Receptive field mapping was combined with eye‐tracking to develop a reward‐based training procedure. The animal was trained to use electrically induced point‐flash percepts, called phosphenes, in performing a memory saccade task. It is our long‐term goal to use this animal model to investigate stimulation strategies in developing a multichannel sensory cortical interface.</description><identifier>ISSN: 0160-564X</identifier><identifier>EISSN: 1525-1594</identifier><identifier>DOI: 10.1046/j.1525-1594.2003.07308.x</identifier><identifier>PMID: 14616519</identifier><language>eng</language><publisher>Oxford, UK and Malden, USA: Blackwell Science Inc</publisher><subject>Animal model ; Animals ; Brain Mapping - methods ; Cortical interface ; Electric Stimulation ; electrical stimulation ; Electrodes, Implanted ; Implants, Experimental ; Intracortical microelectrodes ; Macaca ; Macaca mulatta ; Male ; Memory ; Memory - physiology ; Microelectrodes ; Models, Animal ; Perception ; Phosphenes - physiology ; Sensory ; Visual prosthesis</subject><ispartof>Artificial organs, 2003-11, Vol.27 (11), p.1005-1015</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5028-c85bb74ffb1434aaf34fe8a56d06cc34a4b4066161e30136ce00b331edf2fa8d3</citedby><cites>FETCH-LOGICAL-c5028-c85bb74ffb1434aaf34fe8a56d06cc34a4b4066161e30136ce00b331edf2fa8d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1046%2Fj.1525-1594.2003.07308.x$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1046%2Fj.1525-1594.2003.07308.x$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,778,782,1414,27911,27912,45561,45562</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/14616519$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Troyk, Philip</creatorcontrib><creatorcontrib>Bak, Martin</creatorcontrib><creatorcontrib>Berg, Joshua</creatorcontrib><creatorcontrib>Bradley, David</creatorcontrib><creatorcontrib>Cogan, Stuart</creatorcontrib><creatorcontrib>Erickson, Robert</creatorcontrib><creatorcontrib>Kufta, Conrad</creatorcontrib><creatorcontrib>McCreery, Douglas</creatorcontrib><creatorcontrib>Schmidt, Edward</creatorcontrib><creatorcontrib>Towle, Vernon</creatorcontrib><title>A Model for Intracortical Visual Prosthesis Research</title><title>Artificial organs</title><addtitle>Artif Organs</addtitle><description>: In the field of visual prosthesis research, it has generally been held that animal models are limited to testing the safety of implantable hardware due to the inability of the animal to provide a linguistic report of perceptions. In contrast, vision scientists make extensive use of trained animal models to investigate the links between visual stimuli, neural activities, and perception. We describe an animal model for cortical visual prosthesis research in which novel animal psychophysical testing has been employed to compensate for the lack of a linguistic report. One hundred and fifty‐two intracortical microelectrodes were chronically implanted in area V1 of a male macaque. Receptive field mapping was combined with eye‐tracking to develop a reward‐based training procedure. The animal was trained to use electrically induced point‐flash percepts, called phosphenes, in performing a memory saccade task. It is our long‐term goal to use this animal model to investigate stimulation strategies in developing a multichannel sensory cortical interface.</description><subject>Animal model</subject><subject>Animals</subject><subject>Brain Mapping - methods</subject><subject>Cortical interface</subject><subject>Electric Stimulation</subject><subject>electrical stimulation</subject><subject>Electrodes, Implanted</subject><subject>Implants, Experimental</subject><subject>Intracortical microelectrodes</subject><subject>Macaca</subject><subject>Macaca mulatta</subject><subject>Male</subject><subject>Memory</subject><subject>Memory - physiology</subject><subject>Microelectrodes</subject><subject>Models, Animal</subject><subject>Perception</subject><subject>Phosphenes - physiology</subject><subject>Sensory</subject><subject>Visual prosthesis</subject><issn>0160-564X</issn><issn>1525-1594</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkMtOwzAQRS0EglL4BZQVu4Rx_Ei6YFHxpkAR753lOLZISZtiJ6L9exxSlSWsxrLvGc8chAIMEQbKjyYRZjELMRvQKAYgESQE0mixgXrrh03UA8whZJy-7aBd5yYAkFDg22gHU445w4MeosPgtsp1GZjKBlez2kpV2bpQsgxeCtf4cm8rV79rV7jgQTstrXrfQ1tGlk7vr2ofPZ-fPZ1chjfji6uT4U2oGMRpqFKWZQk1JsOUUCkNoUankvEcuFL-hmZ-HD8J1gQw4UoDZIRgnZvYyDQnfXTY9Z3b6rPRrhbTwildlnKmq8aJxEOpX_jPIB7EhIGP91HaBZXfylltxNwWU2mXAoNo1YqJaA2K1qBo1YoftWLh0YPVH0021fkvuHLpA8dd4Kso9fLfjcVw_NCePB92fOFqvVjz0n4InpCEide7C_E44tdvp2QkBuQb6KqVeg</recordid><startdate>200311</startdate><enddate>200311</enddate><creator>Troyk, Philip</creator><creator>Bak, Martin</creator><creator>Berg, Joshua</creator><creator>Bradley, David</creator><creator>Cogan, Stuart</creator><creator>Erickson, Robert</creator><creator>Kufta, Conrad</creator><creator>McCreery, Douglas</creator><creator>Schmidt, Edward</creator><creator>Towle, Vernon</creator><general>Blackwell Science Inc</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>200311</creationdate><title>A Model for Intracortical Visual Prosthesis Research</title><author>Troyk, Philip ; Bak, Martin ; Berg, Joshua ; Bradley, David ; Cogan, Stuart ; Erickson, Robert ; Kufta, Conrad ; McCreery, Douglas ; Schmidt, Edward ; Towle, Vernon</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5028-c85bb74ffb1434aaf34fe8a56d06cc34a4b4066161e30136ce00b331edf2fa8d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Animal model</topic><topic>Animals</topic><topic>Brain Mapping - methods</topic><topic>Cortical interface</topic><topic>Electric Stimulation</topic><topic>electrical stimulation</topic><topic>Electrodes, Implanted</topic><topic>Implants, Experimental</topic><topic>Intracortical microelectrodes</topic><topic>Macaca</topic><topic>Macaca mulatta</topic><topic>Male</topic><topic>Memory</topic><topic>Memory - physiology</topic><topic>Microelectrodes</topic><topic>Models, Animal</topic><topic>Perception</topic><topic>Phosphenes - physiology</topic><topic>Sensory</topic><topic>Visual prosthesis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Troyk, Philip</creatorcontrib><creatorcontrib>Bak, Martin</creatorcontrib><creatorcontrib>Berg, Joshua</creatorcontrib><creatorcontrib>Bradley, David</creatorcontrib><creatorcontrib>Cogan, Stuart</creatorcontrib><creatorcontrib>Erickson, Robert</creatorcontrib><creatorcontrib>Kufta, Conrad</creatorcontrib><creatorcontrib>McCreery, Douglas</creatorcontrib><creatorcontrib>Schmidt, Edward</creatorcontrib><creatorcontrib>Towle, Vernon</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Artificial organs</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Troyk, Philip</au><au>Bak, Martin</au><au>Berg, Joshua</au><au>Bradley, David</au><au>Cogan, Stuart</au><au>Erickson, Robert</au><au>Kufta, Conrad</au><au>McCreery, Douglas</au><au>Schmidt, Edward</au><au>Towle, Vernon</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Model for Intracortical Visual Prosthesis Research</atitle><jtitle>Artificial organs</jtitle><addtitle>Artif Organs</addtitle><date>2003-11</date><risdate>2003</risdate><volume>27</volume><issue>11</issue><spage>1005</spage><epage>1015</epage><pages>1005-1015</pages><issn>0160-564X</issn><eissn>1525-1594</eissn><abstract>: In the field of visual prosthesis research, it has generally been held that animal models are limited to testing the safety of implantable hardware due to the inability of the animal to provide a linguistic report of perceptions. In contrast, vision scientists make extensive use of trained animal models to investigate the links between visual stimuli, neural activities, and perception. We describe an animal model for cortical visual prosthesis research in which novel animal psychophysical testing has been employed to compensate for the lack of a linguistic report. One hundred and fifty‐two intracortical microelectrodes were chronically implanted in area V1 of a male macaque. Receptive field mapping was combined with eye‐tracking to develop a reward‐based training procedure. The animal was trained to use electrically induced point‐flash percepts, called phosphenes, in performing a memory saccade task. It is our long‐term goal to use this animal model to investigate stimulation strategies in developing a multichannel sensory cortical interface.</abstract><cop>Oxford, UK and Malden, USA</cop><pub>Blackwell Science Inc</pub><pmid>14616519</pmid><doi>10.1046/j.1525-1594.2003.07308.x</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0160-564X |
ispartof | Artificial organs, 2003-11, Vol.27 (11), p.1005-1015 |
issn | 0160-564X 1525-1594 |
language | eng |
recordid | cdi_proquest_miscellaneous_71368152 |
source | MEDLINE; Wiley Online Library Journals Frontfile Complete |
subjects | Animal model Animals Brain Mapping - methods Cortical interface Electric Stimulation electrical stimulation Electrodes, Implanted Implants, Experimental Intracortical microelectrodes Macaca Macaca mulatta Male Memory Memory - physiology Microelectrodes Models, Animal Perception Phosphenes - physiology Sensory Visual prosthesis |
title | A Model for Intracortical Visual Prosthesis Research |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T16%3A05%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Model%20for%20Intracortical%20Visual%20Prosthesis%20Research&rft.jtitle=Artificial%20organs&rft.au=Troyk,%20Philip&rft.date=2003-11&rft.volume=27&rft.issue=11&rft.spage=1005&rft.epage=1015&rft.pages=1005-1015&rft.issn=0160-564X&rft.eissn=1525-1594&rft_id=info:doi/10.1046/j.1525-1594.2003.07308.x&rft_dat=%3Cproquest_cross%3E19235071%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=19235071&rft_id=info:pmid/14616519&rfr_iscdi=true |