Parameterization and Classification of the Protein Universe via Geometric Techniques
We present a scheme for the classification of 3487 non-redundant protein structures into 1207 non-hierarchical clusters by using recurring structural patterns of three to six amino acids as keys of classification. This results in several signature patterns, which seem to decide membership of a prote...
Gespeichert in:
Veröffentlicht in: | Journal of molecular biology 2003-11, Vol.334 (1), p.157-172 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 172 |
---|---|
container_issue | 1 |
container_start_page | 157 |
container_title | Journal of molecular biology |
container_volume | 334 |
creator | Tendulkar, Ashish V. Wangikar, Pramod P. Sohoni, Milind A. Samant, Vivekanand V. Mone, Chetan Y. |
description | We present a scheme for the classification of 3487 non-redundant protein structures into 1207 non-hierarchical clusters by using recurring structural patterns of three to six amino acids as keys of classification. This results in several signature patterns, which seem to decide membership of a protein in a functional category. The patterns provide clues to the key residues involved in functional sites as well as in protein–protein interaction. The discovered patterns include a “glutamate double bridge” of superoxide dismutase, the functional interface of the serine protease and inhibitor, interface of homo/hetero dimers, and functional sites of several enzyme families. We use geometric invariants to decide superimposability of structural patterns. This allows the parameterization of patterns and discovery of recurring patterns
via clustering. The geometric invariant-based approach eliminates the computationally explosive step of pair-wise comparison of structures. The results provide a vast resource for the biologists for experimental validation of the proposed functional sites, and for the design of synthetic enzymes, inhibitors and drugs. |
doi_str_mv | 10.1016/j.jmb.2003.09.021 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_71336792</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022283603011434</els_id><sourcerecordid>71336792</sourcerecordid><originalsourceid>FETCH-LOGICAL-c392t-fb315514c93b640d8b03d463a6792713bade7e207b2a9fa377448af1644a216b3</originalsourceid><addsrcrecordid>eNp9kE1Lw0AQhhdRbK3-AC-Sk7fE2Y9sEjxJ0SoU7KE9L5vNhG7IR91NC_rrTUjBm6eB4X2fYR5C7ilEFKh8qqKqySMGwCPIImD0gswppFmYSp5ekjkAYyFLuZyRG-8rAIi5SK_JjIo4kykkc7LdaKcb7NHZH93brg10WwTLWntvS2umVVcG_R6Djet6tG2wa-0JncfgZHWwwm6oO2uCLZp9a7-O6G_JValrj3fnuSC7t9ft8j1cf64-li_r0PCM9WGZcxrHVJiM51JAkebACyG5lknGEspzXWCCDJKc6azUPEmESHVJpRCaUZnzBXmcuAfXjXd71VhvsK51i93Rq4HBR9YQpFPQuM57h6U6ONto960oqFGlqtSgUo0qFWRqUDl0Hs7wY95g8dc4uxsCz1MAhxdPFp3yxmJrsLAOTa-Kzv6D_wU5QIRE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>71336792</pqid></control><display><type>article</type><title>Parameterization and Classification of the Protein Universe via Geometric Techniques</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Tendulkar, Ashish V. ; Wangikar, Pramod P. ; Sohoni, Milind A. ; Samant, Vivekanand V. ; Mone, Chetan Y.</creator><creatorcontrib>Tendulkar, Ashish V. ; Wangikar, Pramod P. ; Sohoni, Milind A. ; Samant, Vivekanand V. ; Mone, Chetan Y.</creatorcontrib><description>We present a scheme for the classification of 3487 non-redundant protein structures into 1207 non-hierarchical clusters by using recurring structural patterns of three to six amino acids as keys of classification. This results in several signature patterns, which seem to decide membership of a protein in a functional category. The patterns provide clues to the key residues involved in functional sites as well as in protein–protein interaction. The discovered patterns include a “glutamate double bridge” of superoxide dismutase, the functional interface of the serine protease and inhibitor, interface of homo/hetero dimers, and functional sites of several enzyme families. We use geometric invariants to decide superimposability of structural patterns. This allows the parameterization of patterns and discovery of recurring patterns
via clustering. The geometric invariant-based approach eliminates the computationally explosive step of pair-wise comparison of structures. The results provide a vast resource for the biologists for experimental validation of the proposed functional sites, and for the design of synthetic enzymes, inhibitors and drugs.</description><identifier>ISSN: 0022-2836</identifier><identifier>EISSN: 1089-8638</identifier><identifier>DOI: 10.1016/j.jmb.2003.09.021</identifier><identifier>PMID: 14596807</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Algorithms ; Amino Acids ; Binding Sites ; clustering ; Evolution, Molecular ; functional site ; geometric invariants ; Models, Molecular ; Models, Theoretical ; protein structure comparison ; Protein Structure, Tertiary ; Proteins - chemistry ; Proteins - classification ; Proteins - metabolism ; protein–protein interface</subject><ispartof>Journal of molecular biology, 2003-11, Vol.334 (1), p.157-172</ispartof><rights>2003 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c392t-fb315514c93b640d8b03d463a6792713bade7e207b2a9fa377448af1644a216b3</citedby><cites>FETCH-LOGICAL-c392t-fb315514c93b640d8b03d463a6792713bade7e207b2a9fa377448af1644a216b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0022283603011434$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/14596807$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Tendulkar, Ashish V.</creatorcontrib><creatorcontrib>Wangikar, Pramod P.</creatorcontrib><creatorcontrib>Sohoni, Milind A.</creatorcontrib><creatorcontrib>Samant, Vivekanand V.</creatorcontrib><creatorcontrib>Mone, Chetan Y.</creatorcontrib><title>Parameterization and Classification of the Protein Universe via Geometric Techniques</title><title>Journal of molecular biology</title><addtitle>J Mol Biol</addtitle><description>We present a scheme for the classification of 3487 non-redundant protein structures into 1207 non-hierarchical clusters by using recurring structural patterns of three to six amino acids as keys of classification. This results in several signature patterns, which seem to decide membership of a protein in a functional category. The patterns provide clues to the key residues involved in functional sites as well as in protein–protein interaction. The discovered patterns include a “glutamate double bridge” of superoxide dismutase, the functional interface of the serine protease and inhibitor, interface of homo/hetero dimers, and functional sites of several enzyme families. We use geometric invariants to decide superimposability of structural patterns. This allows the parameterization of patterns and discovery of recurring patterns
via clustering. The geometric invariant-based approach eliminates the computationally explosive step of pair-wise comparison of structures. The results provide a vast resource for the biologists for experimental validation of the proposed functional sites, and for the design of synthetic enzymes, inhibitors and drugs.</description><subject>Algorithms</subject><subject>Amino Acids</subject><subject>Binding Sites</subject><subject>clustering</subject><subject>Evolution, Molecular</subject><subject>functional site</subject><subject>geometric invariants</subject><subject>Models, Molecular</subject><subject>Models, Theoretical</subject><subject>protein structure comparison</subject><subject>Protein Structure, Tertiary</subject><subject>Proteins - chemistry</subject><subject>Proteins - classification</subject><subject>Proteins - metabolism</subject><subject>protein–protein interface</subject><issn>0022-2836</issn><issn>1089-8638</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kE1Lw0AQhhdRbK3-AC-Sk7fE2Y9sEjxJ0SoU7KE9L5vNhG7IR91NC_rrTUjBm6eB4X2fYR5C7ilEFKh8qqKqySMGwCPIImD0gswppFmYSp5ekjkAYyFLuZyRG-8rAIi5SK_JjIo4kykkc7LdaKcb7NHZH93brg10WwTLWntvS2umVVcG_R6Djet6tG2wa-0JncfgZHWwwm6oO2uCLZp9a7-O6G_JValrj3fnuSC7t9ft8j1cf64-li_r0PCM9WGZcxrHVJiM51JAkebACyG5lknGEspzXWCCDJKc6azUPEmESHVJpRCaUZnzBXmcuAfXjXd71VhvsK51i93Rq4HBR9YQpFPQuM57h6U6ONto960oqFGlqtSgUo0qFWRqUDl0Hs7wY95g8dc4uxsCz1MAhxdPFp3yxmJrsLAOTa-Kzv6D_wU5QIRE</recordid><startdate>20031114</startdate><enddate>20031114</enddate><creator>Tendulkar, Ashish V.</creator><creator>Wangikar, Pramod P.</creator><creator>Sohoni, Milind A.</creator><creator>Samant, Vivekanand V.</creator><creator>Mone, Chetan Y.</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20031114</creationdate><title>Parameterization and Classification of the Protein Universe via Geometric Techniques</title><author>Tendulkar, Ashish V. ; Wangikar, Pramod P. ; Sohoni, Milind A. ; Samant, Vivekanand V. ; Mone, Chetan Y.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c392t-fb315514c93b640d8b03d463a6792713bade7e207b2a9fa377448af1644a216b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Algorithms</topic><topic>Amino Acids</topic><topic>Binding Sites</topic><topic>clustering</topic><topic>Evolution, Molecular</topic><topic>functional site</topic><topic>geometric invariants</topic><topic>Models, Molecular</topic><topic>Models, Theoretical</topic><topic>protein structure comparison</topic><topic>Protein Structure, Tertiary</topic><topic>Proteins - chemistry</topic><topic>Proteins - classification</topic><topic>Proteins - metabolism</topic><topic>protein–protein interface</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tendulkar, Ashish V.</creatorcontrib><creatorcontrib>Wangikar, Pramod P.</creatorcontrib><creatorcontrib>Sohoni, Milind A.</creatorcontrib><creatorcontrib>Samant, Vivekanand V.</creatorcontrib><creatorcontrib>Mone, Chetan Y.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of molecular biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tendulkar, Ashish V.</au><au>Wangikar, Pramod P.</au><au>Sohoni, Milind A.</au><au>Samant, Vivekanand V.</au><au>Mone, Chetan Y.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Parameterization and Classification of the Protein Universe via Geometric Techniques</atitle><jtitle>Journal of molecular biology</jtitle><addtitle>J Mol Biol</addtitle><date>2003-11-14</date><risdate>2003</risdate><volume>334</volume><issue>1</issue><spage>157</spage><epage>172</epage><pages>157-172</pages><issn>0022-2836</issn><eissn>1089-8638</eissn><abstract>We present a scheme for the classification of 3487 non-redundant protein structures into 1207 non-hierarchical clusters by using recurring structural patterns of three to six amino acids as keys of classification. This results in several signature patterns, which seem to decide membership of a protein in a functional category. The patterns provide clues to the key residues involved in functional sites as well as in protein–protein interaction. The discovered patterns include a “glutamate double bridge” of superoxide dismutase, the functional interface of the serine protease and inhibitor, interface of homo/hetero dimers, and functional sites of several enzyme families. We use geometric invariants to decide superimposability of structural patterns. This allows the parameterization of patterns and discovery of recurring patterns
via clustering. The geometric invariant-based approach eliminates the computationally explosive step of pair-wise comparison of structures. The results provide a vast resource for the biologists for experimental validation of the proposed functional sites, and for the design of synthetic enzymes, inhibitors and drugs.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>14596807</pmid><doi>10.1016/j.jmb.2003.09.021</doi><tpages>16</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-2836 |
ispartof | Journal of molecular biology, 2003-11, Vol.334 (1), p.157-172 |
issn | 0022-2836 1089-8638 |
language | eng |
recordid | cdi_proquest_miscellaneous_71336792 |
source | MEDLINE; Elsevier ScienceDirect Journals |
subjects | Algorithms Amino Acids Binding Sites clustering Evolution, Molecular functional site geometric invariants Models, Molecular Models, Theoretical protein structure comparison Protein Structure, Tertiary Proteins - chemistry Proteins - classification Proteins - metabolism protein–protein interface |
title | Parameterization and Classification of the Protein Universe via Geometric Techniques |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T23%3A56%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Parameterization%20and%20Classification%20of%20the%20Protein%20Universe%20via%20Geometric%20Techniques&rft.jtitle=Journal%20of%20molecular%20biology&rft.au=Tendulkar,%20Ashish%20V.&rft.date=2003-11-14&rft.volume=334&rft.issue=1&rft.spage=157&rft.epage=172&rft.pages=157-172&rft.issn=0022-2836&rft.eissn=1089-8638&rft_id=info:doi/10.1016/j.jmb.2003.09.021&rft_dat=%3Cproquest_cross%3E71336792%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=71336792&rft_id=info:pmid/14596807&rft_els_id=S0022283603011434&rfr_iscdi=true |