Parameterization and Classification of the Protein Universe via Geometric Techniques

We present a scheme for the classification of 3487 non-redundant protein structures into 1207 non-hierarchical clusters by using recurring structural patterns of three to six amino acids as keys of classification. This results in several signature patterns, which seem to decide membership of a prote...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of molecular biology 2003-11, Vol.334 (1), p.157-172
Hauptverfasser: Tendulkar, Ashish V., Wangikar, Pramod P., Sohoni, Milind A., Samant, Vivekanand V., Mone, Chetan Y.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 172
container_issue 1
container_start_page 157
container_title Journal of molecular biology
container_volume 334
creator Tendulkar, Ashish V.
Wangikar, Pramod P.
Sohoni, Milind A.
Samant, Vivekanand V.
Mone, Chetan Y.
description We present a scheme for the classification of 3487 non-redundant protein structures into 1207 non-hierarchical clusters by using recurring structural patterns of three to six amino acids as keys of classification. This results in several signature patterns, which seem to decide membership of a protein in a functional category. The patterns provide clues to the key residues involved in functional sites as well as in protein–protein interaction. The discovered patterns include a “glutamate double bridge” of superoxide dismutase, the functional interface of the serine protease and inhibitor, interface of homo/hetero dimers, and functional sites of several enzyme families. We use geometric invariants to decide superimposability of structural patterns. This allows the parameterization of patterns and discovery of recurring patterns via clustering. The geometric invariant-based approach eliminates the computationally explosive step of pair-wise comparison of structures. The results provide a vast resource for the biologists for experimental validation of the proposed functional sites, and for the design of synthetic enzymes, inhibitors and drugs.
doi_str_mv 10.1016/j.jmb.2003.09.021
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_71336792</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022283603011434</els_id><sourcerecordid>71336792</sourcerecordid><originalsourceid>FETCH-LOGICAL-c392t-fb315514c93b640d8b03d463a6792713bade7e207b2a9fa377448af1644a216b3</originalsourceid><addsrcrecordid>eNp9kE1Lw0AQhhdRbK3-AC-Sk7fE2Y9sEjxJ0SoU7KE9L5vNhG7IR91NC_rrTUjBm6eB4X2fYR5C7ilEFKh8qqKqySMGwCPIImD0gswppFmYSp5ekjkAYyFLuZyRG-8rAIi5SK_JjIo4kykkc7LdaKcb7NHZH93brg10WwTLWntvS2umVVcG_R6Djet6tG2wa-0JncfgZHWwwm6oO2uCLZp9a7-O6G_JValrj3fnuSC7t9ft8j1cf64-li_r0PCM9WGZcxrHVJiM51JAkebACyG5lknGEspzXWCCDJKc6azUPEmESHVJpRCaUZnzBXmcuAfXjXd71VhvsK51i93Rq4HBR9YQpFPQuM57h6U6ONto960oqFGlqtSgUo0qFWRqUDl0Hs7wY95g8dc4uxsCz1MAhxdPFp3yxmJrsLAOTa-Kzv6D_wU5QIRE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>71336792</pqid></control><display><type>article</type><title>Parameterization and Classification of the Protein Universe via Geometric Techniques</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Tendulkar, Ashish V. ; Wangikar, Pramod P. ; Sohoni, Milind A. ; Samant, Vivekanand V. ; Mone, Chetan Y.</creator><creatorcontrib>Tendulkar, Ashish V. ; Wangikar, Pramod P. ; Sohoni, Milind A. ; Samant, Vivekanand V. ; Mone, Chetan Y.</creatorcontrib><description>We present a scheme for the classification of 3487 non-redundant protein structures into 1207 non-hierarchical clusters by using recurring structural patterns of three to six amino acids as keys of classification. This results in several signature patterns, which seem to decide membership of a protein in a functional category. The patterns provide clues to the key residues involved in functional sites as well as in protein–protein interaction. The discovered patterns include a “glutamate double bridge” of superoxide dismutase, the functional interface of the serine protease and inhibitor, interface of homo/hetero dimers, and functional sites of several enzyme families. We use geometric invariants to decide superimposability of structural patterns. This allows the parameterization of patterns and discovery of recurring patterns via clustering. The geometric invariant-based approach eliminates the computationally explosive step of pair-wise comparison of structures. The results provide a vast resource for the biologists for experimental validation of the proposed functional sites, and for the design of synthetic enzymes, inhibitors and drugs.</description><identifier>ISSN: 0022-2836</identifier><identifier>EISSN: 1089-8638</identifier><identifier>DOI: 10.1016/j.jmb.2003.09.021</identifier><identifier>PMID: 14596807</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Algorithms ; Amino Acids ; Binding Sites ; clustering ; Evolution, Molecular ; functional site ; geometric invariants ; Models, Molecular ; Models, Theoretical ; protein structure comparison ; Protein Structure, Tertiary ; Proteins - chemistry ; Proteins - classification ; Proteins - metabolism ; protein–protein interface</subject><ispartof>Journal of molecular biology, 2003-11, Vol.334 (1), p.157-172</ispartof><rights>2003 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c392t-fb315514c93b640d8b03d463a6792713bade7e207b2a9fa377448af1644a216b3</citedby><cites>FETCH-LOGICAL-c392t-fb315514c93b640d8b03d463a6792713bade7e207b2a9fa377448af1644a216b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0022283603011434$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/14596807$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Tendulkar, Ashish V.</creatorcontrib><creatorcontrib>Wangikar, Pramod P.</creatorcontrib><creatorcontrib>Sohoni, Milind A.</creatorcontrib><creatorcontrib>Samant, Vivekanand V.</creatorcontrib><creatorcontrib>Mone, Chetan Y.</creatorcontrib><title>Parameterization and Classification of the Protein Universe via Geometric Techniques</title><title>Journal of molecular biology</title><addtitle>J Mol Biol</addtitle><description>We present a scheme for the classification of 3487 non-redundant protein structures into 1207 non-hierarchical clusters by using recurring structural patterns of three to six amino acids as keys of classification. This results in several signature patterns, which seem to decide membership of a protein in a functional category. The patterns provide clues to the key residues involved in functional sites as well as in protein–protein interaction. The discovered patterns include a “glutamate double bridge” of superoxide dismutase, the functional interface of the serine protease and inhibitor, interface of homo/hetero dimers, and functional sites of several enzyme families. We use geometric invariants to decide superimposability of structural patterns. This allows the parameterization of patterns and discovery of recurring patterns via clustering. The geometric invariant-based approach eliminates the computationally explosive step of pair-wise comparison of structures. The results provide a vast resource for the biologists for experimental validation of the proposed functional sites, and for the design of synthetic enzymes, inhibitors and drugs.</description><subject>Algorithms</subject><subject>Amino Acids</subject><subject>Binding Sites</subject><subject>clustering</subject><subject>Evolution, Molecular</subject><subject>functional site</subject><subject>geometric invariants</subject><subject>Models, Molecular</subject><subject>Models, Theoretical</subject><subject>protein structure comparison</subject><subject>Protein Structure, Tertiary</subject><subject>Proteins - chemistry</subject><subject>Proteins - classification</subject><subject>Proteins - metabolism</subject><subject>protein–protein interface</subject><issn>0022-2836</issn><issn>1089-8638</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kE1Lw0AQhhdRbK3-AC-Sk7fE2Y9sEjxJ0SoU7KE9L5vNhG7IR91NC_rrTUjBm6eB4X2fYR5C7ilEFKh8qqKqySMGwCPIImD0gswppFmYSp5ekjkAYyFLuZyRG-8rAIi5SK_JjIo4kykkc7LdaKcb7NHZH93brg10WwTLWntvS2umVVcG_R6Djet6tG2wa-0JncfgZHWwwm6oO2uCLZp9a7-O6G_JValrj3fnuSC7t9ft8j1cf64-li_r0PCM9WGZcxrHVJiM51JAkebACyG5lknGEspzXWCCDJKc6azUPEmESHVJpRCaUZnzBXmcuAfXjXd71VhvsK51i93Rq4HBR9YQpFPQuM57h6U6ONto960oqFGlqtSgUo0qFWRqUDl0Hs7wY95g8dc4uxsCz1MAhxdPFp3yxmJrsLAOTa-Kzv6D_wU5QIRE</recordid><startdate>20031114</startdate><enddate>20031114</enddate><creator>Tendulkar, Ashish V.</creator><creator>Wangikar, Pramod P.</creator><creator>Sohoni, Milind A.</creator><creator>Samant, Vivekanand V.</creator><creator>Mone, Chetan Y.</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20031114</creationdate><title>Parameterization and Classification of the Protein Universe via Geometric Techniques</title><author>Tendulkar, Ashish V. ; Wangikar, Pramod P. ; Sohoni, Milind A. ; Samant, Vivekanand V. ; Mone, Chetan Y.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c392t-fb315514c93b640d8b03d463a6792713bade7e207b2a9fa377448af1644a216b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Algorithms</topic><topic>Amino Acids</topic><topic>Binding Sites</topic><topic>clustering</topic><topic>Evolution, Molecular</topic><topic>functional site</topic><topic>geometric invariants</topic><topic>Models, Molecular</topic><topic>Models, Theoretical</topic><topic>protein structure comparison</topic><topic>Protein Structure, Tertiary</topic><topic>Proteins - chemistry</topic><topic>Proteins - classification</topic><topic>Proteins - metabolism</topic><topic>protein–protein interface</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tendulkar, Ashish V.</creatorcontrib><creatorcontrib>Wangikar, Pramod P.</creatorcontrib><creatorcontrib>Sohoni, Milind A.</creatorcontrib><creatorcontrib>Samant, Vivekanand V.</creatorcontrib><creatorcontrib>Mone, Chetan Y.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of molecular biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tendulkar, Ashish V.</au><au>Wangikar, Pramod P.</au><au>Sohoni, Milind A.</au><au>Samant, Vivekanand V.</au><au>Mone, Chetan Y.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Parameterization and Classification of the Protein Universe via Geometric Techniques</atitle><jtitle>Journal of molecular biology</jtitle><addtitle>J Mol Biol</addtitle><date>2003-11-14</date><risdate>2003</risdate><volume>334</volume><issue>1</issue><spage>157</spage><epage>172</epage><pages>157-172</pages><issn>0022-2836</issn><eissn>1089-8638</eissn><abstract>We present a scheme for the classification of 3487 non-redundant protein structures into 1207 non-hierarchical clusters by using recurring structural patterns of three to six amino acids as keys of classification. This results in several signature patterns, which seem to decide membership of a protein in a functional category. The patterns provide clues to the key residues involved in functional sites as well as in protein–protein interaction. The discovered patterns include a “glutamate double bridge” of superoxide dismutase, the functional interface of the serine protease and inhibitor, interface of homo/hetero dimers, and functional sites of several enzyme families. We use geometric invariants to decide superimposability of structural patterns. This allows the parameterization of patterns and discovery of recurring patterns via clustering. The geometric invariant-based approach eliminates the computationally explosive step of pair-wise comparison of structures. The results provide a vast resource for the biologists for experimental validation of the proposed functional sites, and for the design of synthetic enzymes, inhibitors and drugs.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>14596807</pmid><doi>10.1016/j.jmb.2003.09.021</doi><tpages>16</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0022-2836
ispartof Journal of molecular biology, 2003-11, Vol.334 (1), p.157-172
issn 0022-2836
1089-8638
language eng
recordid cdi_proquest_miscellaneous_71336792
source MEDLINE; Elsevier ScienceDirect Journals
subjects Algorithms
Amino Acids
Binding Sites
clustering
Evolution, Molecular
functional site
geometric invariants
Models, Molecular
Models, Theoretical
protein structure comparison
Protein Structure, Tertiary
Proteins - chemistry
Proteins - classification
Proteins - metabolism
protein–protein interface
title Parameterization and Classification of the Protein Universe via Geometric Techniques
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T23%3A56%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Parameterization%20and%20Classification%20of%20the%20Protein%20Universe%20via%20Geometric%20Techniques&rft.jtitle=Journal%20of%20molecular%20biology&rft.au=Tendulkar,%20Ashish%20V.&rft.date=2003-11-14&rft.volume=334&rft.issue=1&rft.spage=157&rft.epage=172&rft.pages=157-172&rft.issn=0022-2836&rft.eissn=1089-8638&rft_id=info:doi/10.1016/j.jmb.2003.09.021&rft_dat=%3Cproquest_cross%3E71336792%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=71336792&rft_id=info:pmid/14596807&rft_els_id=S0022283603011434&rfr_iscdi=true