Kernel hierarchical gene clustering from microarray expression data

Motivation: Unsupervised analysis of microarray gene expression data attempts to find biologically significant patterns within a given collection of expression measurements. For example, hierarchical clustering can be applied to expression profiles of genes across multiple experiments, identifying g...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bioinformatics 2003-11, Vol.19 (16), p.2097-2104
Hauptverfasser: Qin, Jie, Lewis, Darrin P., Noble, William Stafford
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2104
container_issue 16
container_start_page 2097
container_title Bioinformatics
container_volume 19
creator Qin, Jie
Lewis, Darrin P.
Noble, William Stafford
description Motivation: Unsupervised analysis of microarray gene expression data attempts to find biologically significant patterns within a given collection of expression measurements. For example, hierarchical clustering can be applied to expression profiles of genes across multiple experiments, identifying groups of genes that share similiar expression profiles. Previous work using the support vector machine supervised learning algorithm with microarray data suggests that higher-order features, such as pairwise and tertiary correlations across multiple experiments, may provide significant benefit in learning to recognize classes of co-expressed genes. Results: We describe a generalization of the hierarchical clustering algorithm that efficiently incorporates these higher-order features by using a kernel function to map the data into a high-dimensional feature space. We then evaluate the utility of the kernel hierarchical clustering algorithm using both internal and external validation. The experiments demonstrate that the kernel representation itself is insufficient to provide improved clustering performance. We conclude that mapping gene expression data into a high-dimensional feature space is only a good idea when combined with a learning algorithm, such as the support vector machine that does not suffer from the curse of dimensionality. Availability: Supplementary data at www.cs.columbia.edu/compbio/hiclust. Software source code available by request.
doi_str_mv 10.1093/bioinformatics/btg288
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_71332332</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>443846461</sourcerecordid><originalsourceid>FETCH-LOGICAL-c478t-163b0b498c658d44df8faa31d19714b4f85c19873f15d093a32fbcb67dc978223</originalsourceid><addsrcrecordid>eNqF0VtrFTEQB_AgFnvRj6Asgr5tm9ncH_VgrbTii0rpS8hmk9PUvZxOdqH99k05B0t9EQIJ5DcDM39C3gI9BmrYSZumNMYJBzcnn0_aed1o_YIcAJe0bqgwL8ubSVVzTdk-Ocz5hlIBnPNXZB-4MFyBOCCr84Bj6KvrFNChv07e9dU6jKHy_ZLngGlcVxGnoRqSx8khuvsq3G0w5Jymserc7F6Tvej6HN7s7iPy6_TLz9VZffHj67fVp4vac6XnGiRracuN9lLojvMu6ugcgw6MAt7yqIUHoxWLILoyomNNbH0rVeeN0k3DjsjHbd8NTrdLyLMdUvah790YpiVbBYw1j-d_EAxIKZgp8P0_8GZacCxDFKNlWZHhBYktKvPnjCHaDabB4b0Fah-zsM-zsNssSt27XfOlHUL3VLVbfgEfdsDlsvaIbvQpPznRCNBUFVdvXSqB3P39d_jHSsWUsGeXV1Zd8qvfq--n9jN7AIAUpl4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>198647194</pqid></control><display><type>article</type><title>Kernel hierarchical gene clustering from microarray expression data</title><source>MEDLINE</source><source>Access via Oxford University Press (Open Access Collection)</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><creator>Qin, Jie ; Lewis, Darrin P. ; Noble, William Stafford</creator><creatorcontrib>Qin, Jie ; Lewis, Darrin P. ; Noble, William Stafford</creatorcontrib><description>Motivation: Unsupervised analysis of microarray gene expression data attempts to find biologically significant patterns within a given collection of expression measurements. For example, hierarchical clustering can be applied to expression profiles of genes across multiple experiments, identifying groups of genes that share similiar expression profiles. Previous work using the support vector machine supervised learning algorithm with microarray data suggests that higher-order features, such as pairwise and tertiary correlations across multiple experiments, may provide significant benefit in learning to recognize classes of co-expressed genes. Results: We describe a generalization of the hierarchical clustering algorithm that efficiently incorporates these higher-order features by using a kernel function to map the data into a high-dimensional feature space. We then evaluate the utility of the kernel hierarchical clustering algorithm using both internal and external validation. The experiments demonstrate that the kernel representation itself is insufficient to provide improved clustering performance. We conclude that mapping gene expression data into a high-dimensional feature space is only a good idea when combined with a learning algorithm, such as the support vector machine that does not suffer from the curse of dimensionality. Availability: Supplementary data at www.cs.columbia.edu/compbio/hiclust. Software source code available by request.</description><identifier>ISSN: 1367-4803</identifier><identifier>EISSN: 1460-2059</identifier><identifier>EISSN: 1367-4811</identifier><identifier>DOI: 10.1093/bioinformatics/btg288</identifier><identifier>PMID: 14594715</identifier><identifier>CODEN: BOINFP</identifier><language>eng</language><publisher>Oxford: Oxford University Press</publisher><subject>Algorithms ; Animals ; Artificial Intelligence ; Biological and medical sciences ; Cell Cycle - genetics ; Cluster Analysis ; DNA microarrays ; Fundamental and applied biological sciences. Psychology ; Gene Expression Profiling - methods ; General aspects ; Humans ; Mathematics in biology. Statistical analysis. Models. Metrology. Data processing in biology (general aspects) ; Mice ; Neoplasms - classification ; Neoplasms - genetics ; Oligonucleotide Array Sequence Analysis - methods ; Pattern Recognition, Automated ; Reproducibility of Results ; Sensitivity and Specificity ; Sequence Analysis, DNA - methods ; Yeasts - genetics</subject><ispartof>Bioinformatics, 2003-11, Vol.19 (16), p.2097-2104</ispartof><rights>2004 INIST-CNRS</rights><rights>Copyright Oxford University Press(England) Nov 1, 2003</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c478t-163b0b498c658d44df8faa31d19714b4f85c19873f15d093a32fbcb67dc978223</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=15251807$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/14594715$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Qin, Jie</creatorcontrib><creatorcontrib>Lewis, Darrin P.</creatorcontrib><creatorcontrib>Noble, William Stafford</creatorcontrib><title>Kernel hierarchical gene clustering from microarray expression data</title><title>Bioinformatics</title><addtitle>Bioinformatics</addtitle><description>Motivation: Unsupervised analysis of microarray gene expression data attempts to find biologically significant patterns within a given collection of expression measurements. For example, hierarchical clustering can be applied to expression profiles of genes across multiple experiments, identifying groups of genes that share similiar expression profiles. Previous work using the support vector machine supervised learning algorithm with microarray data suggests that higher-order features, such as pairwise and tertiary correlations across multiple experiments, may provide significant benefit in learning to recognize classes of co-expressed genes. Results: We describe a generalization of the hierarchical clustering algorithm that efficiently incorporates these higher-order features by using a kernel function to map the data into a high-dimensional feature space. We then evaluate the utility of the kernel hierarchical clustering algorithm using both internal and external validation. The experiments demonstrate that the kernel representation itself is insufficient to provide improved clustering performance. We conclude that mapping gene expression data into a high-dimensional feature space is only a good idea when combined with a learning algorithm, such as the support vector machine that does not suffer from the curse of dimensionality. Availability: Supplementary data at www.cs.columbia.edu/compbio/hiclust. Software source code available by request.</description><subject>Algorithms</subject><subject>Animals</subject><subject>Artificial Intelligence</subject><subject>Biological and medical sciences</subject><subject>Cell Cycle - genetics</subject><subject>Cluster Analysis</subject><subject>DNA microarrays</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Gene Expression Profiling - methods</subject><subject>General aspects</subject><subject>Humans</subject><subject>Mathematics in biology. Statistical analysis. Models. Metrology. Data processing in biology (general aspects)</subject><subject>Mice</subject><subject>Neoplasms - classification</subject><subject>Neoplasms - genetics</subject><subject>Oligonucleotide Array Sequence Analysis - methods</subject><subject>Pattern Recognition, Automated</subject><subject>Reproducibility of Results</subject><subject>Sensitivity and Specificity</subject><subject>Sequence Analysis, DNA - methods</subject><subject>Yeasts - genetics</subject><issn>1367-4803</issn><issn>1460-2059</issn><issn>1367-4811</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqF0VtrFTEQB_AgFnvRj6Asgr5tm9ncH_VgrbTii0rpS8hmk9PUvZxOdqH99k05B0t9EQIJ5DcDM39C3gI9BmrYSZumNMYJBzcnn0_aed1o_YIcAJe0bqgwL8ubSVVzTdk-Ocz5hlIBnPNXZB-4MFyBOCCr84Bj6KvrFNChv07e9dU6jKHy_ZLngGlcVxGnoRqSx8khuvsq3G0w5Jymserc7F6Tvej6HN7s7iPy6_TLz9VZffHj67fVp4vac6XnGiRracuN9lLojvMu6ugcgw6MAt7yqIUHoxWLILoyomNNbH0rVeeN0k3DjsjHbd8NTrdLyLMdUvah790YpiVbBYw1j-d_EAxIKZgp8P0_8GZacCxDFKNlWZHhBYktKvPnjCHaDabB4b0Fah-zsM-zsNssSt27XfOlHUL3VLVbfgEfdsDlsvaIbvQpPznRCNBUFVdvXSqB3P39d_jHSsWUsGeXV1Zd8qvfq--n9jN7AIAUpl4</recordid><startdate>20031101</startdate><enddate>20031101</enddate><creator>Qin, Jie</creator><creator>Lewis, Darrin P.</creator><creator>Noble, William Stafford</creator><general>Oxford University Press</general><general>Oxford Publishing Limited (England)</general><scope>BSCLL</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TM</scope><scope>7TO</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>20031101</creationdate><title>Kernel hierarchical gene clustering from microarray expression data</title><author>Qin, Jie ; Lewis, Darrin P. ; Noble, William Stafford</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c478t-163b0b498c658d44df8faa31d19714b4f85c19873f15d093a32fbcb67dc978223</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Algorithms</topic><topic>Animals</topic><topic>Artificial Intelligence</topic><topic>Biological and medical sciences</topic><topic>Cell Cycle - genetics</topic><topic>Cluster Analysis</topic><topic>DNA microarrays</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Gene Expression Profiling - methods</topic><topic>General aspects</topic><topic>Humans</topic><topic>Mathematics in biology. Statistical analysis. Models. Metrology. Data processing in biology (general aspects)</topic><topic>Mice</topic><topic>Neoplasms - classification</topic><topic>Neoplasms - genetics</topic><topic>Oligonucleotide Array Sequence Analysis - methods</topic><topic>Pattern Recognition, Automated</topic><topic>Reproducibility of Results</topic><topic>Sensitivity and Specificity</topic><topic>Sequence Analysis, DNA - methods</topic><topic>Yeasts - genetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Qin, Jie</creatorcontrib><creatorcontrib>Lewis, Darrin P.</creatorcontrib><creatorcontrib>Noble, William Stafford</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Bioinformatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Qin, Jie</au><au>Lewis, Darrin P.</au><au>Noble, William Stafford</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Kernel hierarchical gene clustering from microarray expression data</atitle><jtitle>Bioinformatics</jtitle><addtitle>Bioinformatics</addtitle><date>2003-11-01</date><risdate>2003</risdate><volume>19</volume><issue>16</issue><spage>2097</spage><epage>2104</epage><pages>2097-2104</pages><issn>1367-4803</issn><eissn>1460-2059</eissn><eissn>1367-4811</eissn><coden>BOINFP</coden><abstract>Motivation: Unsupervised analysis of microarray gene expression data attempts to find biologically significant patterns within a given collection of expression measurements. For example, hierarchical clustering can be applied to expression profiles of genes across multiple experiments, identifying groups of genes that share similiar expression profiles. Previous work using the support vector machine supervised learning algorithm with microarray data suggests that higher-order features, such as pairwise and tertiary correlations across multiple experiments, may provide significant benefit in learning to recognize classes of co-expressed genes. Results: We describe a generalization of the hierarchical clustering algorithm that efficiently incorporates these higher-order features by using a kernel function to map the data into a high-dimensional feature space. We then evaluate the utility of the kernel hierarchical clustering algorithm using both internal and external validation. The experiments demonstrate that the kernel representation itself is insufficient to provide improved clustering performance. We conclude that mapping gene expression data into a high-dimensional feature space is only a good idea when combined with a learning algorithm, such as the support vector machine that does not suffer from the curse of dimensionality. Availability: Supplementary data at www.cs.columbia.edu/compbio/hiclust. Software source code available by request.</abstract><cop>Oxford</cop><pub>Oxford University Press</pub><pmid>14594715</pmid><doi>10.1093/bioinformatics/btg288</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1367-4803
ispartof Bioinformatics, 2003-11, Vol.19 (16), p.2097-2104
issn 1367-4803
1460-2059
1367-4811
language eng
recordid cdi_proquest_miscellaneous_71332332
source MEDLINE; Access via Oxford University Press (Open Access Collection); Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection
subjects Algorithms
Animals
Artificial Intelligence
Biological and medical sciences
Cell Cycle - genetics
Cluster Analysis
DNA microarrays
Fundamental and applied biological sciences. Psychology
Gene Expression Profiling - methods
General aspects
Humans
Mathematics in biology. Statistical analysis. Models. Metrology. Data processing in biology (general aspects)
Mice
Neoplasms - classification
Neoplasms - genetics
Oligonucleotide Array Sequence Analysis - methods
Pattern Recognition, Automated
Reproducibility of Results
Sensitivity and Specificity
Sequence Analysis, DNA - methods
Yeasts - genetics
title Kernel hierarchical gene clustering from microarray expression data
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T18%3A27%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Kernel%20hierarchical%20gene%20clustering%20from%20microarray%20expression%20data&rft.jtitle=Bioinformatics&rft.au=Qin,%20Jie&rft.date=2003-11-01&rft.volume=19&rft.issue=16&rft.spage=2097&rft.epage=2104&rft.pages=2097-2104&rft.issn=1367-4803&rft.eissn=1460-2059&rft.coden=BOINFP&rft_id=info:doi/10.1093/bioinformatics/btg288&rft_dat=%3Cproquest_cross%3E443846461%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=198647194&rft_id=info:pmid/14594715&rfr_iscdi=true