Kernel hierarchical gene clustering from microarray expression data
Motivation: Unsupervised analysis of microarray gene expression data attempts to find biologically significant patterns within a given collection of expression measurements. For example, hierarchical clustering can be applied to expression profiles of genes across multiple experiments, identifying g...
Gespeichert in:
Veröffentlicht in: | Bioinformatics 2003-11, Vol.19 (16), p.2097-2104 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2104 |
---|---|
container_issue | 16 |
container_start_page | 2097 |
container_title | Bioinformatics |
container_volume | 19 |
creator | Qin, Jie Lewis, Darrin P. Noble, William Stafford |
description | Motivation: Unsupervised analysis of microarray gene expression data attempts to find biologically significant patterns within a given collection of expression measurements. For example, hierarchical clustering can be applied to expression profiles of genes across multiple experiments, identifying groups of genes that share similiar expression profiles. Previous work using the support vector machine supervised learning algorithm with microarray data suggests that higher-order features, such as pairwise and tertiary correlations across multiple experiments, may provide significant benefit in learning to recognize classes of co-expressed genes. Results: We describe a generalization of the hierarchical clustering algorithm that efficiently incorporates these higher-order features by using a kernel function to map the data into a high-dimensional feature space. We then evaluate the utility of the kernel hierarchical clustering algorithm using both internal and external validation. The experiments demonstrate that the kernel representation itself is insufficient to provide improved clustering performance. We conclude that mapping gene expression data into a high-dimensional feature space is only a good idea when combined with a learning algorithm, such as the support vector machine that does not suffer from the curse of dimensionality. Availability: Supplementary data at www.cs.columbia.edu/compbio/hiclust. Software source code available by request. |
doi_str_mv | 10.1093/bioinformatics/btg288 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_71332332</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>443846461</sourcerecordid><originalsourceid>FETCH-LOGICAL-c478t-163b0b498c658d44df8faa31d19714b4f85c19873f15d093a32fbcb67dc978223</originalsourceid><addsrcrecordid>eNqF0VtrFTEQB_AgFnvRj6Asgr5tm9ncH_VgrbTii0rpS8hmk9PUvZxOdqH99k05B0t9EQIJ5DcDM39C3gI9BmrYSZumNMYJBzcnn0_aed1o_YIcAJe0bqgwL8ubSVVzTdk-Ocz5hlIBnPNXZB-4MFyBOCCr84Bj6KvrFNChv07e9dU6jKHy_ZLngGlcVxGnoRqSx8khuvsq3G0w5Jymserc7F6Tvej6HN7s7iPy6_TLz9VZffHj67fVp4vac6XnGiRracuN9lLojvMu6ugcgw6MAt7yqIUHoxWLILoyomNNbH0rVeeN0k3DjsjHbd8NTrdLyLMdUvah790YpiVbBYw1j-d_EAxIKZgp8P0_8GZacCxDFKNlWZHhBYktKvPnjCHaDabB4b0Fah-zsM-zsNssSt27XfOlHUL3VLVbfgEfdsDlsvaIbvQpPznRCNBUFVdvXSqB3P39d_jHSsWUsGeXV1Zd8qvfq--n9jN7AIAUpl4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>198647194</pqid></control><display><type>article</type><title>Kernel hierarchical gene clustering from microarray expression data</title><source>MEDLINE</source><source>Access via Oxford University Press (Open Access Collection)</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><creator>Qin, Jie ; Lewis, Darrin P. ; Noble, William Stafford</creator><creatorcontrib>Qin, Jie ; Lewis, Darrin P. ; Noble, William Stafford</creatorcontrib><description>Motivation: Unsupervised analysis of microarray gene expression data attempts to find biologically significant patterns within a given collection of expression measurements. For example, hierarchical clustering can be applied to expression profiles of genes across multiple experiments, identifying groups of genes that share similiar expression profiles. Previous work using the support vector machine supervised learning algorithm with microarray data suggests that higher-order features, such as pairwise and tertiary correlations across multiple experiments, may provide significant benefit in learning to recognize classes of co-expressed genes. Results: We describe a generalization of the hierarchical clustering algorithm that efficiently incorporates these higher-order features by using a kernel function to map the data into a high-dimensional feature space. We then evaluate the utility of the kernel hierarchical clustering algorithm using both internal and external validation. The experiments demonstrate that the kernel representation itself is insufficient to provide improved clustering performance. We conclude that mapping gene expression data into a high-dimensional feature space is only a good idea when combined with a learning algorithm, such as the support vector machine that does not suffer from the curse of dimensionality. Availability: Supplementary data at www.cs.columbia.edu/compbio/hiclust. Software source code available by request.</description><identifier>ISSN: 1367-4803</identifier><identifier>EISSN: 1460-2059</identifier><identifier>EISSN: 1367-4811</identifier><identifier>DOI: 10.1093/bioinformatics/btg288</identifier><identifier>PMID: 14594715</identifier><identifier>CODEN: BOINFP</identifier><language>eng</language><publisher>Oxford: Oxford University Press</publisher><subject>Algorithms ; Animals ; Artificial Intelligence ; Biological and medical sciences ; Cell Cycle - genetics ; Cluster Analysis ; DNA microarrays ; Fundamental and applied biological sciences. Psychology ; Gene Expression Profiling - methods ; General aspects ; Humans ; Mathematics in biology. Statistical analysis. Models. Metrology. Data processing in biology (general aspects) ; Mice ; Neoplasms - classification ; Neoplasms - genetics ; Oligonucleotide Array Sequence Analysis - methods ; Pattern Recognition, Automated ; Reproducibility of Results ; Sensitivity and Specificity ; Sequence Analysis, DNA - methods ; Yeasts - genetics</subject><ispartof>Bioinformatics, 2003-11, Vol.19 (16), p.2097-2104</ispartof><rights>2004 INIST-CNRS</rights><rights>Copyright Oxford University Press(England) Nov 1, 2003</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c478t-163b0b498c658d44df8faa31d19714b4f85c19873f15d093a32fbcb67dc978223</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=15251807$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/14594715$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Qin, Jie</creatorcontrib><creatorcontrib>Lewis, Darrin P.</creatorcontrib><creatorcontrib>Noble, William Stafford</creatorcontrib><title>Kernel hierarchical gene clustering from microarray expression data</title><title>Bioinformatics</title><addtitle>Bioinformatics</addtitle><description>Motivation: Unsupervised analysis of microarray gene expression data attempts to find biologically significant patterns within a given collection of expression measurements. For example, hierarchical clustering can be applied to expression profiles of genes across multiple experiments, identifying groups of genes that share similiar expression profiles. Previous work using the support vector machine supervised learning algorithm with microarray data suggests that higher-order features, such as pairwise and tertiary correlations across multiple experiments, may provide significant benefit in learning to recognize classes of co-expressed genes. Results: We describe a generalization of the hierarchical clustering algorithm that efficiently incorporates these higher-order features by using a kernel function to map the data into a high-dimensional feature space. We then evaluate the utility of the kernel hierarchical clustering algorithm using both internal and external validation. The experiments demonstrate that the kernel representation itself is insufficient to provide improved clustering performance. We conclude that mapping gene expression data into a high-dimensional feature space is only a good idea when combined with a learning algorithm, such as the support vector machine that does not suffer from the curse of dimensionality. Availability: Supplementary data at www.cs.columbia.edu/compbio/hiclust. Software source code available by request.</description><subject>Algorithms</subject><subject>Animals</subject><subject>Artificial Intelligence</subject><subject>Biological and medical sciences</subject><subject>Cell Cycle - genetics</subject><subject>Cluster Analysis</subject><subject>DNA microarrays</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Gene Expression Profiling - methods</subject><subject>General aspects</subject><subject>Humans</subject><subject>Mathematics in biology. Statistical analysis. Models. Metrology. Data processing in biology (general aspects)</subject><subject>Mice</subject><subject>Neoplasms - classification</subject><subject>Neoplasms - genetics</subject><subject>Oligonucleotide Array Sequence Analysis - methods</subject><subject>Pattern Recognition, Automated</subject><subject>Reproducibility of Results</subject><subject>Sensitivity and Specificity</subject><subject>Sequence Analysis, DNA - methods</subject><subject>Yeasts - genetics</subject><issn>1367-4803</issn><issn>1460-2059</issn><issn>1367-4811</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqF0VtrFTEQB_AgFnvRj6Asgr5tm9ncH_VgrbTii0rpS8hmk9PUvZxOdqH99k05B0t9EQIJ5DcDM39C3gI9BmrYSZumNMYJBzcnn0_aed1o_YIcAJe0bqgwL8ubSVVzTdk-Ocz5hlIBnPNXZB-4MFyBOCCr84Bj6KvrFNChv07e9dU6jKHy_ZLngGlcVxGnoRqSx8khuvsq3G0w5Jymserc7F6Tvej6HN7s7iPy6_TLz9VZffHj67fVp4vac6XnGiRracuN9lLojvMu6ugcgw6MAt7yqIUHoxWLILoyomNNbH0rVeeN0k3DjsjHbd8NTrdLyLMdUvah790YpiVbBYw1j-d_EAxIKZgp8P0_8GZacCxDFKNlWZHhBYktKvPnjCHaDabB4b0Fah-zsM-zsNssSt27XfOlHUL3VLVbfgEfdsDlsvaIbvQpPznRCNBUFVdvXSqB3P39d_jHSsWUsGeXV1Zd8qvfq--n9jN7AIAUpl4</recordid><startdate>20031101</startdate><enddate>20031101</enddate><creator>Qin, Jie</creator><creator>Lewis, Darrin P.</creator><creator>Noble, William Stafford</creator><general>Oxford University Press</general><general>Oxford Publishing Limited (England)</general><scope>BSCLL</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TM</scope><scope>7TO</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>20031101</creationdate><title>Kernel hierarchical gene clustering from microarray expression data</title><author>Qin, Jie ; Lewis, Darrin P. ; Noble, William Stafford</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c478t-163b0b498c658d44df8faa31d19714b4f85c19873f15d093a32fbcb67dc978223</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Algorithms</topic><topic>Animals</topic><topic>Artificial Intelligence</topic><topic>Biological and medical sciences</topic><topic>Cell Cycle - genetics</topic><topic>Cluster Analysis</topic><topic>DNA microarrays</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Gene Expression Profiling - methods</topic><topic>General aspects</topic><topic>Humans</topic><topic>Mathematics in biology. Statistical analysis. Models. Metrology. Data processing in biology (general aspects)</topic><topic>Mice</topic><topic>Neoplasms - classification</topic><topic>Neoplasms - genetics</topic><topic>Oligonucleotide Array Sequence Analysis - methods</topic><topic>Pattern Recognition, Automated</topic><topic>Reproducibility of Results</topic><topic>Sensitivity and Specificity</topic><topic>Sequence Analysis, DNA - methods</topic><topic>Yeasts - genetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Qin, Jie</creatorcontrib><creatorcontrib>Lewis, Darrin P.</creatorcontrib><creatorcontrib>Noble, William Stafford</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Bioinformatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Qin, Jie</au><au>Lewis, Darrin P.</au><au>Noble, William Stafford</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Kernel hierarchical gene clustering from microarray expression data</atitle><jtitle>Bioinformatics</jtitle><addtitle>Bioinformatics</addtitle><date>2003-11-01</date><risdate>2003</risdate><volume>19</volume><issue>16</issue><spage>2097</spage><epage>2104</epage><pages>2097-2104</pages><issn>1367-4803</issn><eissn>1460-2059</eissn><eissn>1367-4811</eissn><coden>BOINFP</coden><abstract>Motivation: Unsupervised analysis of microarray gene expression data attempts to find biologically significant patterns within a given collection of expression measurements. For example, hierarchical clustering can be applied to expression profiles of genes across multiple experiments, identifying groups of genes that share similiar expression profiles. Previous work using the support vector machine supervised learning algorithm with microarray data suggests that higher-order features, such as pairwise and tertiary correlations across multiple experiments, may provide significant benefit in learning to recognize classes of co-expressed genes. Results: We describe a generalization of the hierarchical clustering algorithm that efficiently incorporates these higher-order features by using a kernel function to map the data into a high-dimensional feature space. We then evaluate the utility of the kernel hierarchical clustering algorithm using both internal and external validation. The experiments demonstrate that the kernel representation itself is insufficient to provide improved clustering performance. We conclude that mapping gene expression data into a high-dimensional feature space is only a good idea when combined with a learning algorithm, such as the support vector machine that does not suffer from the curse of dimensionality. Availability: Supplementary data at www.cs.columbia.edu/compbio/hiclust. Software source code available by request.</abstract><cop>Oxford</cop><pub>Oxford University Press</pub><pmid>14594715</pmid><doi>10.1093/bioinformatics/btg288</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1367-4803 |
ispartof | Bioinformatics, 2003-11, Vol.19 (16), p.2097-2104 |
issn | 1367-4803 1460-2059 1367-4811 |
language | eng |
recordid | cdi_proquest_miscellaneous_71332332 |
source | MEDLINE; Access via Oxford University Press (Open Access Collection); Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection |
subjects | Algorithms Animals Artificial Intelligence Biological and medical sciences Cell Cycle - genetics Cluster Analysis DNA microarrays Fundamental and applied biological sciences. Psychology Gene Expression Profiling - methods General aspects Humans Mathematics in biology. Statistical analysis. Models. Metrology. Data processing in biology (general aspects) Mice Neoplasms - classification Neoplasms - genetics Oligonucleotide Array Sequence Analysis - methods Pattern Recognition, Automated Reproducibility of Results Sensitivity and Specificity Sequence Analysis, DNA - methods Yeasts - genetics |
title | Kernel hierarchical gene clustering from microarray expression data |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T18%3A27%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Kernel%20hierarchical%20gene%20clustering%20from%20microarray%20expression%20data&rft.jtitle=Bioinformatics&rft.au=Qin,%20Jie&rft.date=2003-11-01&rft.volume=19&rft.issue=16&rft.spage=2097&rft.epage=2104&rft.pages=2097-2104&rft.issn=1367-4803&rft.eissn=1460-2059&rft.coden=BOINFP&rft_id=info:doi/10.1093/bioinformatics/btg288&rft_dat=%3Cproquest_cross%3E443846461%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=198647194&rft_id=info:pmid/14594715&rfr_iscdi=true |