A cascade thermoacoustic engine

A cascade thermoacoustic engine is described, consisting of one standing-wave stage plus two traveling-wave stages in series. Most of the acoustic power is produced in the efficient traveling-wave stages. The straight-line series configuration is easy to build and allows no Gedeon streaming. The eng...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of the Acoustical Society of America 2003-10, Vol.114 (4 Pt 1), p.1905-1919
Hauptverfasser: Gardner, D L, Swift, G W
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1919
container_issue 4 Pt 1
container_start_page 1905
container_title The Journal of the Acoustical Society of America
container_volume 114
creator Gardner, D L
Swift, G W
description A cascade thermoacoustic engine is described, consisting of one standing-wave stage plus two traveling-wave stages in series. Most of the acoustic power is produced in the efficient traveling-wave stages. The straight-line series configuration is easy to build and allows no Gedeon streaming. The engine delivers up to 2 kW of acoustic power, with an efficiency (the ratio of acoustic power to heater power) of up to 20%. An understanding of the pressure and volume-velocity waves is very good. The agreement between measured and calculated powers and temperatures is reasonable. Some of the measured thermal power that cannot be accounted for by calculation can be attributed to Rayleigh streaming in the two thermal buffer tubes with the largest aspect ratios. A straightforward extension of this work should yield cascade thermoacoustic engines with efficiencies of around 35-40% of the Carnot efficiency.
doi_str_mv 10.1121/1.1612483
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_71330825</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>71330825</sourcerecordid><originalsourceid>FETCH-LOGICAL-c347t-179472bf4dae9a12f11070773fac619178e95c67da3e4685c391632e60121ef73</originalsourceid><addsrcrecordid>eNpFkEtLw0AUhQdRbKwu_AOaleAide68Z1mKLyi40XWYTu5oJI86kyz8942kIGdxOfBxOPcQcg10BcDgAVaggAnDT0gGktHCSCZOSUYphUJYpRbkIqXvyUrD7TlZgJBGSwsZuV3n3iXvKsyHL4xt73w_pqH2OXafdYeX5Cy4JuHV8S7Jx9Pj--al2L49v27W28JzoYcCtBWa7YKoHFoHLABQTbXmwXkFFrRBK73SleMolJGeW1CcoaJTfwyaL8ndnLuP_c-IaSjbOnlsGtfhVKjUwDk1TE7g_Qz62KcUMZT7WLcu_pZAy781yknzGhN7cwwddy1W_-TxfX4Af7tWaQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>71330825</pqid></control><display><type>article</type><title>A cascade thermoacoustic engine</title><source>AIP Journals Complete</source><source>AIP Acoustical Society of America</source><creator>Gardner, D L ; Swift, G W</creator><creatorcontrib>Gardner, D L ; Swift, G W</creatorcontrib><description>A cascade thermoacoustic engine is described, consisting of one standing-wave stage plus two traveling-wave stages in series. Most of the acoustic power is produced in the efficient traveling-wave stages. The straight-line series configuration is easy to build and allows no Gedeon streaming. The engine delivers up to 2 kW of acoustic power, with an efficiency (the ratio of acoustic power to heater power) of up to 20%. An understanding of the pressure and volume-velocity waves is very good. The agreement between measured and calculated powers and temperatures is reasonable. Some of the measured thermal power that cannot be accounted for by calculation can be attributed to Rayleigh streaming in the two thermal buffer tubes with the largest aspect ratios. A straightforward extension of this work should yield cascade thermoacoustic engines with efficiencies of around 35-40% of the Carnot efficiency.</description><identifier>ISSN: 0001-4966</identifier><identifier>EISSN: 1520-8524</identifier><identifier>DOI: 10.1121/1.1612483</identifier><identifier>PMID: 14587591</identifier><language>eng</language><publisher>United States</publisher><ispartof>The Journal of the Acoustical Society of America, 2003-10, Vol.114 (4 Pt 1), p.1905-1919</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c347t-179472bf4dae9a12f11070773fac619178e95c67da3e4685c391632e60121ef73</citedby><cites>FETCH-LOGICAL-c347t-179472bf4dae9a12f11070773fac619178e95c67da3e4685c391632e60121ef73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>207,208,314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/14587591$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gardner, D L</creatorcontrib><creatorcontrib>Swift, G W</creatorcontrib><title>A cascade thermoacoustic engine</title><title>The Journal of the Acoustical Society of America</title><addtitle>J Acoust Soc Am</addtitle><description>A cascade thermoacoustic engine is described, consisting of one standing-wave stage plus two traveling-wave stages in series. Most of the acoustic power is produced in the efficient traveling-wave stages. The straight-line series configuration is easy to build and allows no Gedeon streaming. The engine delivers up to 2 kW of acoustic power, with an efficiency (the ratio of acoustic power to heater power) of up to 20%. An understanding of the pressure and volume-velocity waves is very good. The agreement between measured and calculated powers and temperatures is reasonable. Some of the measured thermal power that cannot be accounted for by calculation can be attributed to Rayleigh streaming in the two thermal buffer tubes with the largest aspect ratios. A straightforward extension of this work should yield cascade thermoacoustic engines with efficiencies of around 35-40% of the Carnot efficiency.</description><issn>0001-4966</issn><issn>1520-8524</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><recordid>eNpFkEtLw0AUhQdRbKwu_AOaleAide68Z1mKLyi40XWYTu5oJI86kyz8942kIGdxOfBxOPcQcg10BcDgAVaggAnDT0gGktHCSCZOSUYphUJYpRbkIqXvyUrD7TlZgJBGSwsZuV3n3iXvKsyHL4xt73w_pqH2OXafdYeX5Cy4JuHV8S7Jx9Pj--al2L49v27W28JzoYcCtBWa7YKoHFoHLABQTbXmwXkFFrRBK73SleMolJGeW1CcoaJTfwyaL8ndnLuP_c-IaSjbOnlsGtfhVKjUwDk1TE7g_Qz62KcUMZT7WLcu_pZAy781yknzGhN7cwwddy1W_-TxfX4Af7tWaQ</recordid><startdate>200310</startdate><enddate>200310</enddate><creator>Gardner, D L</creator><creator>Swift, G W</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>8BM</scope></search><sort><creationdate>200310</creationdate><title>A cascade thermoacoustic engine</title><author>Gardner, D L ; Swift, G W</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c347t-179472bf4dae9a12f11070773fac619178e95c67da3e4685c391632e60121ef73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gardner, D L</creatorcontrib><creatorcontrib>Swift, G W</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>ComDisDome</collection><jtitle>The Journal of the Acoustical Society of America</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gardner, D L</au><au>Swift, G W</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A cascade thermoacoustic engine</atitle><jtitle>The Journal of the Acoustical Society of America</jtitle><addtitle>J Acoust Soc Am</addtitle><date>2003-10</date><risdate>2003</risdate><volume>114</volume><issue>4 Pt 1</issue><spage>1905</spage><epage>1919</epage><pages>1905-1919</pages><issn>0001-4966</issn><eissn>1520-8524</eissn><abstract>A cascade thermoacoustic engine is described, consisting of one standing-wave stage plus two traveling-wave stages in series. Most of the acoustic power is produced in the efficient traveling-wave stages. The straight-line series configuration is easy to build and allows no Gedeon streaming. The engine delivers up to 2 kW of acoustic power, with an efficiency (the ratio of acoustic power to heater power) of up to 20%. An understanding of the pressure and volume-velocity waves is very good. The agreement between measured and calculated powers and temperatures is reasonable. Some of the measured thermal power that cannot be accounted for by calculation can be attributed to Rayleigh streaming in the two thermal buffer tubes with the largest aspect ratios. A straightforward extension of this work should yield cascade thermoacoustic engines with efficiencies of around 35-40% of the Carnot efficiency.</abstract><cop>United States</cop><pmid>14587591</pmid><doi>10.1121/1.1612483</doi><tpages>15</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0001-4966
ispartof The Journal of the Acoustical Society of America, 2003-10, Vol.114 (4 Pt 1), p.1905-1919
issn 0001-4966
1520-8524
language eng
recordid cdi_proquest_miscellaneous_71330825
source AIP Journals Complete; AIP Acoustical Society of America
title A cascade thermoacoustic engine
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T01%3A05%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20cascade%20thermoacoustic%20engine&rft.jtitle=The%20Journal%20of%20the%20Acoustical%20Society%20of%20America&rft.au=Gardner,%20D%20L&rft.date=2003-10&rft.volume=114&rft.issue=4%20Pt%201&rft.spage=1905&rft.epage=1919&rft.pages=1905-1919&rft.issn=0001-4966&rft.eissn=1520-8524&rft_id=info:doi/10.1121/1.1612483&rft_dat=%3Cproquest_cross%3E71330825%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=71330825&rft_id=info:pmid/14587591&rfr_iscdi=true