Incorporation of aminoacyl-tRNA into the ribosome as seen by cryo-electron microscopy

Aminoacyl-tRNAs (aa-tRNAs) are delivered to the ribosome as part of the ternary complex of aa-tRNA, elongation factor Tu (EF-Tu) and GTP. Here, we present a cryo-electron microscopy (cryo-EM) study, at a resolution of ∼9 Å, showing that during the incorporation of the aa-tRNA into the 70S ribosome o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature Structural Biology 2003-11, Vol.10 (11), p.899-906
Hauptverfasser: Frank, Joachim, Valle, Mikel, Zavialov, Andrey, Li, Wen, Stagg, Scott M, Sengupta, Jayati, Nielsen, Rikke C, Nissen, Poul, Harvey, Stephen C, Ehrenberg, Måns
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 906
container_issue 11
container_start_page 899
container_title Nature Structural Biology
container_volume 10
creator Frank, Joachim
Valle, Mikel
Zavialov, Andrey
Li, Wen
Stagg, Scott M
Sengupta, Jayati
Nielsen, Rikke C
Nissen, Poul
Harvey, Stephen C
Ehrenberg, Måns
description Aminoacyl-tRNAs (aa-tRNAs) are delivered to the ribosome as part of the ternary complex of aa-tRNA, elongation factor Tu (EF-Tu) and GTP. Here, we present a cryo-electron microscopy (cryo-EM) study, at a resolution of ∼9 Å, showing that during the incorporation of the aa-tRNA into the 70S ribosome of Escherichia coli , the flexibility of aa-tRNA allows the initial codon recognition and its accommodation into the ribosomal A site. In addition, a conformational change observed in the GTPase-associated center (GAC) of the ribosomal 50S subunit may provide the mechanism by which the ribosome promotes a relative movement of the aa-tRNA with respect to EF-Tu. This relative rearrangement seems to facilitate codon recognition by the incoming aa-tRNA, and to provide the codon-anticodon recognition-dependent signal for the GTPase activity of EF-Tu. From these new findings we propose a mechanism that can explain the sequence of events during the decoding of mRNA on the ribosome.
doi_str_mv 10.1038/nsb1003
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_71311494</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>71311494</sourcerecordid><originalsourceid>FETCH-LOGICAL-c390t-c6f9dd4fa31be129e222bbe684e9bd2c0ee0cafb3ebccb1c25efc368886c05413</originalsourceid><addsrcrecordid>eNqF0U1LwzAYB_AgiptT_ARK8KBeqnlps_Y4hi-DoSAOvJUke6odbTKT9tBvb0anAz14yuH5Pf_w50HolJIbSnh6a7yihPA9NGSc04iL5G0fDSkZsyjlIh2gI-9XhNA4JtkhGtA4ESLAIVrMjLZubZ1sSmuwLbCsS2Ol7qqoeXma4NI0FjcfgF2prLc1YOmxBzBYdVi7zkZQgW5cWK5L7azXdt0do4NCVh5Otu8ILe7vXqeP0fz5YTadzCPNM9JEWhTZchkXklMFlGXAGFMKRBpDppZMEwCiZaE4KK0V1SyBQoc6aSo0SWLKR-iyz107-9mCb_K69BqqShqwrc_HlFMaZ_G_kGaMJwkZB3jxC65s60wokTOWMiHGSRbQVY82fb2DIl-7spauyynJN_fIt_cI8nwb16oalju3PUAA1z3wYWTewe3--5t11lMjm9bBT9b3_Av95J46</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>228266759</pqid></control><display><type>article</type><title>Incorporation of aminoacyl-tRNA into the ribosome as seen by cryo-electron microscopy</title><source>MEDLINE</source><source>Nature</source><source>Alma/SFX Local Collection</source><creator>Frank, Joachim ; Valle, Mikel ; Zavialov, Andrey ; Li, Wen ; Stagg, Scott M ; Sengupta, Jayati ; Nielsen, Rikke C ; Nissen, Poul ; Harvey, Stephen C ; Ehrenberg, Måns</creator><creatorcontrib>Frank, Joachim ; Valle, Mikel ; Zavialov, Andrey ; Li, Wen ; Stagg, Scott M ; Sengupta, Jayati ; Nielsen, Rikke C ; Nissen, Poul ; Harvey, Stephen C ; Ehrenberg, Måns</creatorcontrib><description>Aminoacyl-tRNAs (aa-tRNAs) are delivered to the ribosome as part of the ternary complex of aa-tRNA, elongation factor Tu (EF-Tu) and GTP. Here, we present a cryo-electron microscopy (cryo-EM) study, at a resolution of ∼9 Å, showing that during the incorporation of the aa-tRNA into the 70S ribosome of Escherichia coli , the flexibility of aa-tRNA allows the initial codon recognition and its accommodation into the ribosomal A site. In addition, a conformational change observed in the GTPase-associated center (GAC) of the ribosomal 50S subunit may provide the mechanism by which the ribosome promotes a relative movement of the aa-tRNA with respect to EF-Tu. This relative rearrangement seems to facilitate codon recognition by the incoming aa-tRNA, and to provide the codon-anticodon recognition-dependent signal for the GTPase activity of EF-Tu. From these new findings we propose a mechanism that can explain the sequence of events during the decoding of mRNA on the ribosome.</description><identifier>ISSN: 1072-8368</identifier><identifier>ISSN: 1545-9993</identifier><identifier>EISSN: 2331-365X</identifier><identifier>EISSN: 1545-9985</identifier><identifier>DOI: 10.1038/nsb1003</identifier><identifier>PMID: 14566331</identifier><language>eng</language><publisher>New York: Nature Publishing Group US</publisher><subject>aminoacyl-tRNA ; Biochemistry ; Biological Microscopy ; Cryoelectron Microscopy ; E coli ; Electron microscopy ; Escherichia coli ; Escherichia coli - genetics ; Escherichia coli - metabolism ; Escherichia coli - ultrastructure ; GTP Phosphohydrolases - metabolism ; Life Sciences ; Membrane Biology ; Nucleic Acid Conformation ; Protein Structure ; Protein Structure, Tertiary ; Ribosomes - metabolism ; Ribosomes - ultrastructure ; RNA, Transfer, Amino Acyl - metabolism ; RNA, Transfer, Amino Acyl - ultrastructure</subject><ispartof>Nature Structural Biology, 2003-11, Vol.10 (11), p.899-906</ispartof><rights>Springer Nature America, Inc. 2003</rights><rights>Copyright Nature Publishing Group Nov 2003</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c390t-c6f9dd4fa31be129e222bbe684e9bd2c0ee0cafb3ebccb1c25efc368886c05413</citedby><cites>FETCH-LOGICAL-c390t-c6f9dd4fa31be129e222bbe684e9bd2c0ee0cafb3ebccb1c25efc368886c05413</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,2727,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/14566331$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Frank, Joachim</creatorcontrib><creatorcontrib>Valle, Mikel</creatorcontrib><creatorcontrib>Zavialov, Andrey</creatorcontrib><creatorcontrib>Li, Wen</creatorcontrib><creatorcontrib>Stagg, Scott M</creatorcontrib><creatorcontrib>Sengupta, Jayati</creatorcontrib><creatorcontrib>Nielsen, Rikke C</creatorcontrib><creatorcontrib>Nissen, Poul</creatorcontrib><creatorcontrib>Harvey, Stephen C</creatorcontrib><creatorcontrib>Ehrenberg, Måns</creatorcontrib><title>Incorporation of aminoacyl-tRNA into the ribosome as seen by cryo-electron microscopy</title><title>Nature Structural Biology</title><addtitle>Nat Struct Mol Biol</addtitle><addtitle>Nat Struct Biol</addtitle><description>Aminoacyl-tRNAs (aa-tRNAs) are delivered to the ribosome as part of the ternary complex of aa-tRNA, elongation factor Tu (EF-Tu) and GTP. Here, we present a cryo-electron microscopy (cryo-EM) study, at a resolution of ∼9 Å, showing that during the incorporation of the aa-tRNA into the 70S ribosome of Escherichia coli , the flexibility of aa-tRNA allows the initial codon recognition and its accommodation into the ribosomal A site. In addition, a conformational change observed in the GTPase-associated center (GAC) of the ribosomal 50S subunit may provide the mechanism by which the ribosome promotes a relative movement of the aa-tRNA with respect to EF-Tu. This relative rearrangement seems to facilitate codon recognition by the incoming aa-tRNA, and to provide the codon-anticodon recognition-dependent signal for the GTPase activity of EF-Tu. From these new findings we propose a mechanism that can explain the sequence of events during the decoding of mRNA on the ribosome.</description><subject>aminoacyl-tRNA</subject><subject>Biochemistry</subject><subject>Biological Microscopy</subject><subject>Cryoelectron Microscopy</subject><subject>E coli</subject><subject>Electron microscopy</subject><subject>Escherichia coli</subject><subject>Escherichia coli - genetics</subject><subject>Escherichia coli - metabolism</subject><subject>Escherichia coli - ultrastructure</subject><subject>GTP Phosphohydrolases - metabolism</subject><subject>Life Sciences</subject><subject>Membrane Biology</subject><subject>Nucleic Acid Conformation</subject><subject>Protein Structure</subject><subject>Protein Structure, Tertiary</subject><subject>Ribosomes - metabolism</subject><subject>Ribosomes - ultrastructure</subject><subject>RNA, Transfer, Amino Acyl - metabolism</subject><subject>RNA, Transfer, Amino Acyl - ultrastructure</subject><issn>1072-8368</issn><issn>1545-9993</issn><issn>2331-365X</issn><issn>1545-9985</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqF0U1LwzAYB_AgiptT_ARK8KBeqnlps_Y4hi-DoSAOvJUke6odbTKT9tBvb0anAz14yuH5Pf_w50HolJIbSnh6a7yihPA9NGSc04iL5G0fDSkZsyjlIh2gI-9XhNA4JtkhGtA4ESLAIVrMjLZubZ1sSmuwLbCsS2Ol7qqoeXma4NI0FjcfgF2prLc1YOmxBzBYdVi7zkZQgW5cWK5L7azXdt0do4NCVh5Otu8ILe7vXqeP0fz5YTadzCPNM9JEWhTZchkXklMFlGXAGFMKRBpDppZMEwCiZaE4KK0V1SyBQoc6aSo0SWLKR-iyz107-9mCb_K69BqqShqwrc_HlFMaZ_G_kGaMJwkZB3jxC65s60wokTOWMiHGSRbQVY82fb2DIl-7spauyynJN_fIt_cI8nwb16oalju3PUAA1z3wYWTewe3--5t11lMjm9bBT9b3_Av95J46</recordid><startdate>20031101</startdate><enddate>20031101</enddate><creator>Frank, Joachim</creator><creator>Valle, Mikel</creator><creator>Zavialov, Andrey</creator><creator>Li, Wen</creator><creator>Stagg, Scott M</creator><creator>Sengupta, Jayati</creator><creator>Nielsen, Rikke C</creator><creator>Nissen, Poul</creator><creator>Harvey, Stephen C</creator><creator>Ehrenberg, Måns</creator><general>Nature Publishing Group US</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7N</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P64</scope><scope>PADUT</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>20031101</creationdate><title>Incorporation of aminoacyl-tRNA into the ribosome as seen by cryo-electron microscopy</title><author>Frank, Joachim ; Valle, Mikel ; Zavialov, Andrey ; Li, Wen ; Stagg, Scott M ; Sengupta, Jayati ; Nielsen, Rikke C ; Nissen, Poul ; Harvey, Stephen C ; Ehrenberg, Måns</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c390t-c6f9dd4fa31be129e222bbe684e9bd2c0ee0cafb3ebccb1c25efc368886c05413</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>aminoacyl-tRNA</topic><topic>Biochemistry</topic><topic>Biological Microscopy</topic><topic>Cryoelectron Microscopy</topic><topic>E coli</topic><topic>Electron microscopy</topic><topic>Escherichia coli</topic><topic>Escherichia coli - genetics</topic><topic>Escherichia coli - metabolism</topic><topic>Escherichia coli - ultrastructure</topic><topic>GTP Phosphohydrolases - metabolism</topic><topic>Life Sciences</topic><topic>Membrane Biology</topic><topic>Nucleic Acid Conformation</topic><topic>Protein Structure</topic><topic>Protein Structure, Tertiary</topic><topic>Ribosomes - metabolism</topic><topic>Ribosomes - ultrastructure</topic><topic>RNA, Transfer, Amino Acyl - metabolism</topic><topic>RNA, Transfer, Amino Acyl - ultrastructure</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Frank, Joachim</creatorcontrib><creatorcontrib>Valle, Mikel</creatorcontrib><creatorcontrib>Zavialov, Andrey</creatorcontrib><creatorcontrib>Li, Wen</creatorcontrib><creatorcontrib>Stagg, Scott M</creatorcontrib><creatorcontrib>Sengupta, Jayati</creatorcontrib><creatorcontrib>Nielsen, Rikke C</creatorcontrib><creatorcontrib>Nissen, Poul</creatorcontrib><creatorcontrib>Harvey, Stephen C</creatorcontrib><creatorcontrib>Ehrenberg, Måns</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Research Library China</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Nature Structural Biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Frank, Joachim</au><au>Valle, Mikel</au><au>Zavialov, Andrey</au><au>Li, Wen</au><au>Stagg, Scott M</au><au>Sengupta, Jayati</au><au>Nielsen, Rikke C</au><au>Nissen, Poul</au><au>Harvey, Stephen C</au><au>Ehrenberg, Måns</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Incorporation of aminoacyl-tRNA into the ribosome as seen by cryo-electron microscopy</atitle><jtitle>Nature Structural Biology</jtitle><stitle>Nat Struct Mol Biol</stitle><addtitle>Nat Struct Biol</addtitle><date>2003-11-01</date><risdate>2003</risdate><volume>10</volume><issue>11</issue><spage>899</spage><epage>906</epage><pages>899-906</pages><issn>1072-8368</issn><issn>1545-9993</issn><eissn>2331-365X</eissn><eissn>1545-9985</eissn><abstract>Aminoacyl-tRNAs (aa-tRNAs) are delivered to the ribosome as part of the ternary complex of aa-tRNA, elongation factor Tu (EF-Tu) and GTP. Here, we present a cryo-electron microscopy (cryo-EM) study, at a resolution of ∼9 Å, showing that during the incorporation of the aa-tRNA into the 70S ribosome of Escherichia coli , the flexibility of aa-tRNA allows the initial codon recognition and its accommodation into the ribosomal A site. In addition, a conformational change observed in the GTPase-associated center (GAC) of the ribosomal 50S subunit may provide the mechanism by which the ribosome promotes a relative movement of the aa-tRNA with respect to EF-Tu. This relative rearrangement seems to facilitate codon recognition by the incoming aa-tRNA, and to provide the codon-anticodon recognition-dependent signal for the GTPase activity of EF-Tu. From these new findings we propose a mechanism that can explain the sequence of events during the decoding of mRNA on the ribosome.</abstract><cop>New York</cop><pub>Nature Publishing Group US</pub><pmid>14566331</pmid><doi>10.1038/nsb1003</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1072-8368
ispartof Nature Structural Biology, 2003-11, Vol.10 (11), p.899-906
issn 1072-8368
1545-9993
2331-365X
1545-9985
language eng
recordid cdi_proquest_miscellaneous_71311494
source MEDLINE; Nature; Alma/SFX Local Collection
subjects aminoacyl-tRNA
Biochemistry
Biological Microscopy
Cryoelectron Microscopy
E coli
Electron microscopy
Escherichia coli
Escherichia coli - genetics
Escherichia coli - metabolism
Escherichia coli - ultrastructure
GTP Phosphohydrolases - metabolism
Life Sciences
Membrane Biology
Nucleic Acid Conformation
Protein Structure
Protein Structure, Tertiary
Ribosomes - metabolism
Ribosomes - ultrastructure
RNA, Transfer, Amino Acyl - metabolism
RNA, Transfer, Amino Acyl - ultrastructure
title Incorporation of aminoacyl-tRNA into the ribosome as seen by cryo-electron microscopy
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T22%3A59%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Incorporation%20of%20aminoacyl-tRNA%20into%20the%20ribosome%20as%20seen%20by%20cryo-electron%20microscopy&rft.jtitle=Nature%20Structural%20Biology&rft.au=Frank,%20Joachim&rft.date=2003-11-01&rft.volume=10&rft.issue=11&rft.spage=899&rft.epage=906&rft.pages=899-906&rft.issn=1072-8368&rft.eissn=2331-365X&rft_id=info:doi/10.1038/nsb1003&rft_dat=%3Cproquest_cross%3E71311494%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=228266759&rft_id=info:pmid/14566331&rfr_iscdi=true