Bacterioplankton Community Structure in a Maritime Antarctic Oligotrophic Lake during a Period of Holomixis, as Determined by Denaturing Gradient Gel Electrophoresis (DGGE) and Fluorescence in situ Hybridization (FISH)
The bacterioplankton community structure in Moss Lake, a maritime Antarctic oligotrophic lake, was determined with vertical depth in the water column, during the ice-free period on Signy Island in the South Orkney Islands. Bacterioplankton community structure was determined using a combination of di...
Gespeichert in:
Veröffentlicht in: | Microbial ecology 2003-07, Vol.46 (1), p.92-105 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 105 |
---|---|
container_issue | 1 |
container_start_page | 92 |
container_title | Microbial ecology |
container_volume | 46 |
creator | Pearce, D. A. |
description | The bacterioplankton community structure in Moss Lake, a maritime Antarctic oligotrophic lake, was determined with vertical depth in the water column, during the ice-free period on Signy Island in the South Orkney Islands. Bacterioplankton community structure was determined using a combination of direct counting of 4′,6-diamidino-2-phenylindole (DAPI) stained cells, PCR amplification of 16S rRNA gene fragments, denaturing gradient gel electrophoresis (DGGE) and in situ hybridization with group-specific, fluorescently labeled oligonucleotide probes. Using PCR amplification of 16S rRNA gene fragments and DGGE, the bacterioplankton community composition was shown to be constant with vertical depth in the water column. Specific bacterioplankton species identified through cloning and sequencing the DGGE products obtained were Flavobacterium xinjiangensis (a Flavobacterium), Leptothrix discophora (a beta-Proteobacterium), and a number of uncultured groups: two beta-Proteobacteria, an unclassified Proteobacterium, three sequences from Actinobacteria, and a Cyanobacterium. Fluorescence in situ hybridization (FISH), however, demonstrated that there were minor but significant fluctuations in different groups of bacteria with vertical depth in the water column. It showed that the beta-Proteobacteria accounted for between 26.4 and 71.5%, the alpha-Proteobacteria 2.3-10.6%, the gamma-Proteobacteria 0-29.6%, and the Cytophaga-Flavobacterium group 1.8-23.5% of cells hybridizing to a universal probe. This study reports the first description of the community structure of an oligotrophic Antarctic freshwater lake as determined by PCR-dependent and PCR-independent molecular techniques. It also suggests that the bacterioplankton community of Moss Lake contains classes of bacteria known to be important in freshwater systems elsewhere in the world. |
doi_str_mv | 10.1007/s00248-002-2039-3 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_71304893</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>4287734</jstor_id><sourcerecordid>4287734</sourcerecordid><originalsourceid>FETCH-LOGICAL-c437t-45a91e64fd89e8147b0250be87d4b48873e043bde9174982a91532ed5445b2be3</originalsourceid><addsrcrecordid>eNqNkl1rFDEUhgdR7Fr9AYJIEJQWHM3XTJLLdrsfhZUKVfBuyMycrdnOJGuSga4_1V9jprtY8EZvTjjJc95zTniz7CXBHwjG4mPAmHKZp5hTzFTOHmUTwhnNieTfHmcTjFWRs5LKo-xZCBuMiSgpe5odESqYwkJOsl_nuongjdt22t5GZ9HU9f1gTdyh6-iHJg4ekLFIo0_am2h6QGc2at9E06Crzty46N32e0pW-hZQO3hjbxL9eRRtkVujpetcb-5MeI90QBeQ2vXGQovqXcqsjvuShdetARvRAjo066C513Ueggno5GKxmJ0ibVs074bxsgHb3A8WTBzQcld705qfOpq0wsn88np5-jx7stZdgBeH8zj7Op99mS7z1dXicnq2yhvORMx5oRWBkq9bqUASLmpMC1yDFC2vuZSCAeasbkERwZWkiS4YhbbgvKhpDew4e7fX3Xr3Y4AQq96k8br0oeCGUAnCMJeK_RMkUhVMqfI_QFyWRUkS-OYvcOMGb9O2laRECUUVTxDZQ413IXhYV1tveu13FcHV6KNq76MqxWr0UTWO-vogPNQ9tA8VB-Mk4O0B0KHR3dpr25jwwBWEUElH7tWe24To_J93TqUQjLPfY0jbQA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>821979294</pqid></control><display><type>article</type><title>Bacterioplankton Community Structure in a Maritime Antarctic Oligotrophic Lake during a Period of Holomixis, as Determined by Denaturing Gradient Gel Electrophoresis (DGGE) and Fluorescence in situ Hybridization (FISH)</title><source>MEDLINE</source><source>Jstor Complete Legacy</source><source>Springer Nature - Complete Springer Journals</source><creator>Pearce, D. A.</creator><creatorcontrib>Pearce, D. A.</creatorcontrib><description>The bacterioplankton community structure in Moss Lake, a maritime Antarctic oligotrophic lake, was determined with vertical depth in the water column, during the ice-free period on Signy Island in the South Orkney Islands. Bacterioplankton community structure was determined using a combination of direct counting of 4′,6-diamidino-2-phenylindole (DAPI) stained cells, PCR amplification of 16S rRNA gene fragments, denaturing gradient gel electrophoresis (DGGE) and in situ hybridization with group-specific, fluorescently labeled oligonucleotide probes. Using PCR amplification of 16S rRNA gene fragments and DGGE, the bacterioplankton community composition was shown to be constant with vertical depth in the water column. Specific bacterioplankton species identified through cloning and sequencing the DGGE products obtained were Flavobacterium xinjiangensis (a Flavobacterium), Leptothrix discophora (a beta-Proteobacterium), and a number of uncultured groups: two beta-Proteobacteria, an unclassified Proteobacterium, three sequences from Actinobacteria, and a Cyanobacterium. Fluorescence in situ hybridization (FISH), however, demonstrated that there were minor but significant fluctuations in different groups of bacteria with vertical depth in the water column. It showed that the beta-Proteobacteria accounted for between 26.4 and 71.5%, the alpha-Proteobacteria 2.3-10.6%, the gamma-Proteobacteria 0-29.6%, and the Cytophaga-Flavobacterium group 1.8-23.5% of cells hybridizing to a universal probe. This study reports the first description of the community structure of an oligotrophic Antarctic freshwater lake as determined by PCR-dependent and PCR-independent molecular techniques. It also suggests that the bacterioplankton community of Moss Lake contains classes of bacteria known to be important in freshwater systems elsewhere in the world.</description><identifier>ISSN: 0095-3628</identifier><identifier>EISSN: 1432-184X</identifier><identifier>DOI: 10.1007/s00248-002-2039-3</identifier><identifier>PMID: 12739078</identifier><identifier>CODEN: MCBEBU</identifier><language>eng</language><publisher>New York, NY: Springer-Verlag New York Inc</publisher><subject>Animal, plant and microbial ecology ; Antarctic Regions ; Bacteria ; Bacterial Physiological Phenomena ; Bacteriological methods and techniques used in bacteriology ; Bacteriology ; Bacterioplankton ; Biological and medical sciences ; Cloning ; Colony Count, Microbial ; Community composition ; Community structure ; denaturing gradient gel electrophoresis ; DNA Primers ; Ecosystem ; Electrophoresis ; Electrophoresis, Polyacrylamide Gel ; Flavobacterium xinjiangensis ; Fluorescence ; Fresh water ; Fresh Water - microbiology ; Freshwater ; Freshwater lakes ; Fundamental and applied biological sciences. Psychology ; Gels ; holomixis ; Hybridization ; In situ hybridization ; In Situ Hybridization, Fluorescence ; Lakes ; Leptothrix discophora ; Microbial ecology ; Microbiology ; Mosses ; Oligotrophic lakes ; Plankton - physiology ; Polymerase Chain Reaction ; RNA, Ribosomal, 16S - genetics ; Various environments (extraatmospheric space, air, water) ; Water column ; Water depth</subject><ispartof>Microbial ecology, 2003-07, Vol.46 (1), p.92-105</ispartof><rights>Copyright 2003 Springer-Verlag New York Inc.</rights><rights>2003 INIST-CNRS</rights><rights>Springer-Verlag New York Inc. 2003</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c437t-45a91e64fd89e8147b0250be87d4b48873e043bde9174982a91532ed5445b2be3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/4287734$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/4287734$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>315,781,785,804,27929,27930,58022,58255</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=15112828$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/12739078$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Pearce, D. A.</creatorcontrib><title>Bacterioplankton Community Structure in a Maritime Antarctic Oligotrophic Lake during a Period of Holomixis, as Determined by Denaturing Gradient Gel Electrophoresis (DGGE) and Fluorescence in situ Hybridization (FISH)</title><title>Microbial ecology</title><addtitle>Microb Ecol</addtitle><description>The bacterioplankton community structure in Moss Lake, a maritime Antarctic oligotrophic lake, was determined with vertical depth in the water column, during the ice-free period on Signy Island in the South Orkney Islands. Bacterioplankton community structure was determined using a combination of direct counting of 4′,6-diamidino-2-phenylindole (DAPI) stained cells, PCR amplification of 16S rRNA gene fragments, denaturing gradient gel electrophoresis (DGGE) and in situ hybridization with group-specific, fluorescently labeled oligonucleotide probes. Using PCR amplification of 16S rRNA gene fragments and DGGE, the bacterioplankton community composition was shown to be constant with vertical depth in the water column. Specific bacterioplankton species identified through cloning and sequencing the DGGE products obtained were Flavobacterium xinjiangensis (a Flavobacterium), Leptothrix discophora (a beta-Proteobacterium), and a number of uncultured groups: two beta-Proteobacteria, an unclassified Proteobacterium, three sequences from Actinobacteria, and a Cyanobacterium. Fluorescence in situ hybridization (FISH), however, demonstrated that there were minor but significant fluctuations in different groups of bacteria with vertical depth in the water column. It showed that the beta-Proteobacteria accounted for between 26.4 and 71.5%, the alpha-Proteobacteria 2.3-10.6%, the gamma-Proteobacteria 0-29.6%, and the Cytophaga-Flavobacterium group 1.8-23.5% of cells hybridizing to a universal probe. This study reports the first description of the community structure of an oligotrophic Antarctic freshwater lake as determined by PCR-dependent and PCR-independent molecular techniques. It also suggests that the bacterioplankton community of Moss Lake contains classes of bacteria known to be important in freshwater systems elsewhere in the world.</description><subject>Animal, plant and microbial ecology</subject><subject>Antarctic Regions</subject><subject>Bacteria</subject><subject>Bacterial Physiological Phenomena</subject><subject>Bacteriological methods and techniques used in bacteriology</subject><subject>Bacteriology</subject><subject>Bacterioplankton</subject><subject>Biological and medical sciences</subject><subject>Cloning</subject><subject>Colony Count, Microbial</subject><subject>Community composition</subject><subject>Community structure</subject><subject>denaturing gradient gel electrophoresis</subject><subject>DNA Primers</subject><subject>Ecosystem</subject><subject>Electrophoresis</subject><subject>Electrophoresis, Polyacrylamide Gel</subject><subject>Flavobacterium xinjiangensis</subject><subject>Fluorescence</subject><subject>Fresh water</subject><subject>Fresh Water - microbiology</subject><subject>Freshwater</subject><subject>Freshwater lakes</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Gels</subject><subject>holomixis</subject><subject>Hybridization</subject><subject>In situ hybridization</subject><subject>In Situ Hybridization, Fluorescence</subject><subject>Lakes</subject><subject>Leptothrix discophora</subject><subject>Microbial ecology</subject><subject>Microbiology</subject><subject>Mosses</subject><subject>Oligotrophic lakes</subject><subject>Plankton - physiology</subject><subject>Polymerase Chain Reaction</subject><subject>RNA, Ribosomal, 16S - genetics</subject><subject>Various environments (extraatmospheric space, air, water)</subject><subject>Water column</subject><subject>Water depth</subject><issn>0095-3628</issn><issn>1432-184X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqNkl1rFDEUhgdR7Fr9AYJIEJQWHM3XTJLLdrsfhZUKVfBuyMycrdnOJGuSga4_1V9jprtY8EZvTjjJc95zTniz7CXBHwjG4mPAmHKZp5hTzFTOHmUTwhnNieTfHmcTjFWRs5LKo-xZCBuMiSgpe5odESqYwkJOsl_nuongjdt22t5GZ9HU9f1gTdyh6-iHJg4ekLFIo0_am2h6QGc2at9E06Crzty46N32e0pW-hZQO3hjbxL9eRRtkVujpetcb-5MeI90QBeQ2vXGQovqXcqsjvuShdetARvRAjo066C513Ueggno5GKxmJ0ibVs074bxsgHb3A8WTBzQcld705qfOpq0wsn88np5-jx7stZdgBeH8zj7Op99mS7z1dXicnq2yhvORMx5oRWBkq9bqUASLmpMC1yDFC2vuZSCAeasbkERwZWkiS4YhbbgvKhpDew4e7fX3Xr3Y4AQq96k8br0oeCGUAnCMJeK_RMkUhVMqfI_QFyWRUkS-OYvcOMGb9O2laRECUUVTxDZQ413IXhYV1tveu13FcHV6KNq76MqxWr0UTWO-vogPNQ9tA8VB-Mk4O0B0KHR3dpr25jwwBWEUElH7tWe24To_J93TqUQjLPfY0jbQA</recordid><startdate>20030701</startdate><enddate>20030701</enddate><creator>Pearce, D. A.</creator><general>Springer-Verlag New York Inc</general><general>Springer</general><general>Springer Nature B.V</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7SN</scope><scope>7T7</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>H95</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>L.G</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>RC3</scope><scope>7UA</scope><scope>7X8</scope></search><sort><creationdate>20030701</creationdate><title>Bacterioplankton Community Structure in a Maritime Antarctic Oligotrophic Lake during a Period of Holomixis, as Determined by Denaturing Gradient Gel Electrophoresis (DGGE) and Fluorescence in situ Hybridization (FISH)</title><author>Pearce, D. A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c437t-45a91e64fd89e8147b0250be87d4b48873e043bde9174982a91532ed5445b2be3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Animal, plant and microbial ecology</topic><topic>Antarctic Regions</topic><topic>Bacteria</topic><topic>Bacterial Physiological Phenomena</topic><topic>Bacteriological methods and techniques used in bacteriology</topic><topic>Bacteriology</topic><topic>Bacterioplankton</topic><topic>Biological and medical sciences</topic><topic>Cloning</topic><topic>Colony Count, Microbial</topic><topic>Community composition</topic><topic>Community structure</topic><topic>denaturing gradient gel electrophoresis</topic><topic>DNA Primers</topic><topic>Ecosystem</topic><topic>Electrophoresis</topic><topic>Electrophoresis, Polyacrylamide Gel</topic><topic>Flavobacterium xinjiangensis</topic><topic>Fluorescence</topic><topic>Fresh water</topic><topic>Fresh Water - microbiology</topic><topic>Freshwater</topic><topic>Freshwater lakes</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Gels</topic><topic>holomixis</topic><topic>Hybridization</topic><topic>In situ hybridization</topic><topic>In Situ Hybridization, Fluorescence</topic><topic>Lakes</topic><topic>Leptothrix discophora</topic><topic>Microbial ecology</topic><topic>Microbiology</topic><topic>Mosses</topic><topic>Oligotrophic lakes</topic><topic>Plankton - physiology</topic><topic>Polymerase Chain Reaction</topic><topic>RNA, Ribosomal, 16S - genetics</topic><topic>Various environments (extraatmospheric space, air, water)</topic><topic>Water column</topic><topic>Water depth</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pearce, D. A.</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Ecology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Virology and AIDS Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection (ProQuest)</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Genetics Abstracts</collection><collection>Water Resources Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Microbial ecology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pearce, D. A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bacterioplankton Community Structure in a Maritime Antarctic Oligotrophic Lake during a Period of Holomixis, as Determined by Denaturing Gradient Gel Electrophoresis (DGGE) and Fluorescence in situ Hybridization (FISH)</atitle><jtitle>Microbial ecology</jtitle><addtitle>Microb Ecol</addtitle><date>2003-07-01</date><risdate>2003</risdate><volume>46</volume><issue>1</issue><spage>92</spage><epage>105</epage><pages>92-105</pages><issn>0095-3628</issn><eissn>1432-184X</eissn><coden>MCBEBU</coden><abstract>The bacterioplankton community structure in Moss Lake, a maritime Antarctic oligotrophic lake, was determined with vertical depth in the water column, during the ice-free period on Signy Island in the South Orkney Islands. Bacterioplankton community structure was determined using a combination of direct counting of 4′,6-diamidino-2-phenylindole (DAPI) stained cells, PCR amplification of 16S rRNA gene fragments, denaturing gradient gel electrophoresis (DGGE) and in situ hybridization with group-specific, fluorescently labeled oligonucleotide probes. Using PCR amplification of 16S rRNA gene fragments and DGGE, the bacterioplankton community composition was shown to be constant with vertical depth in the water column. Specific bacterioplankton species identified through cloning and sequencing the DGGE products obtained were Flavobacterium xinjiangensis (a Flavobacterium), Leptothrix discophora (a beta-Proteobacterium), and a number of uncultured groups: two beta-Proteobacteria, an unclassified Proteobacterium, three sequences from Actinobacteria, and a Cyanobacterium. Fluorescence in situ hybridization (FISH), however, demonstrated that there were minor but significant fluctuations in different groups of bacteria with vertical depth in the water column. It showed that the beta-Proteobacteria accounted for between 26.4 and 71.5%, the alpha-Proteobacteria 2.3-10.6%, the gamma-Proteobacteria 0-29.6%, and the Cytophaga-Flavobacterium group 1.8-23.5% of cells hybridizing to a universal probe. This study reports the first description of the community structure of an oligotrophic Antarctic freshwater lake as determined by PCR-dependent and PCR-independent molecular techniques. It also suggests that the bacterioplankton community of Moss Lake contains classes of bacteria known to be important in freshwater systems elsewhere in the world.</abstract><cop>New York, NY</cop><pub>Springer-Verlag New York Inc</pub><pmid>12739078</pmid><doi>10.1007/s00248-002-2039-3</doi><tpages>14</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0095-3628 |
ispartof | Microbial ecology, 2003-07, Vol.46 (1), p.92-105 |
issn | 0095-3628 1432-184X |
language | eng |
recordid | cdi_proquest_miscellaneous_71304893 |
source | MEDLINE; Jstor Complete Legacy; Springer Nature - Complete Springer Journals |
subjects | Animal, plant and microbial ecology Antarctic Regions Bacteria Bacterial Physiological Phenomena Bacteriological methods and techniques used in bacteriology Bacteriology Bacterioplankton Biological and medical sciences Cloning Colony Count, Microbial Community composition Community structure denaturing gradient gel electrophoresis DNA Primers Ecosystem Electrophoresis Electrophoresis, Polyacrylamide Gel Flavobacterium xinjiangensis Fluorescence Fresh water Fresh Water - microbiology Freshwater Freshwater lakes Fundamental and applied biological sciences. Psychology Gels holomixis Hybridization In situ hybridization In Situ Hybridization, Fluorescence Lakes Leptothrix discophora Microbial ecology Microbiology Mosses Oligotrophic lakes Plankton - physiology Polymerase Chain Reaction RNA, Ribosomal, 16S - genetics Various environments (extraatmospheric space, air, water) Water column Water depth |
title | Bacterioplankton Community Structure in a Maritime Antarctic Oligotrophic Lake during a Period of Holomixis, as Determined by Denaturing Gradient Gel Electrophoresis (DGGE) and Fluorescence in situ Hybridization (FISH) |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-11T16%3A57%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bacterioplankton%20Community%20Structure%20in%20a%20Maritime%20Antarctic%20Oligotrophic%20Lake%20during%20a%20Period%20of%20Holomixis,%20as%20Determined%20by%20Denaturing%20Gradient%20Gel%20Electrophoresis%20(DGGE)%20and%20Fluorescence%20in%20situ%20Hybridization%20(FISH)&rft.jtitle=Microbial%20ecology&rft.au=Pearce,%20D.%20A.&rft.date=2003-07-01&rft.volume=46&rft.issue=1&rft.spage=92&rft.epage=105&rft.pages=92-105&rft.issn=0095-3628&rft.eissn=1432-184X&rft.coden=MCBEBU&rft_id=info:doi/10.1007/s00248-002-2039-3&rft_dat=%3Cjstor_proqu%3E4287734%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=821979294&rft_id=info:pmid/12739078&rft_jstor_id=4287734&rfr_iscdi=true |