Bacterioplankton Community Structure in a Maritime Antarctic Oligotrophic Lake during a Period of Holomixis, as Determined by Denaturing Gradient Gel Electrophoresis (DGGE) and Fluorescence in situ Hybridization (FISH)

The bacterioplankton community structure in Moss Lake, a maritime Antarctic oligotrophic lake, was determined with vertical depth in the water column, during the ice-free period on Signy Island in the South Orkney Islands. Bacterioplankton community structure was determined using a combination of di...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Microbial ecology 2003-07, Vol.46 (1), p.92-105
1. Verfasser: Pearce, D. A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 105
container_issue 1
container_start_page 92
container_title Microbial ecology
container_volume 46
creator Pearce, D. A.
description The bacterioplankton community structure in Moss Lake, a maritime Antarctic oligotrophic lake, was determined with vertical depth in the water column, during the ice-free period on Signy Island in the South Orkney Islands. Bacterioplankton community structure was determined using a combination of direct counting of 4′,6-diamidino-2-phenylindole (DAPI) stained cells, PCR amplification of 16S rRNA gene fragments, denaturing gradient gel electrophoresis (DGGE) and in situ hybridization with group-specific, fluorescently labeled oligonucleotide probes. Using PCR amplification of 16S rRNA gene fragments and DGGE, the bacterioplankton community composition was shown to be constant with vertical depth in the water column. Specific bacterioplankton species identified through cloning and sequencing the DGGE products obtained were Flavobacterium xinjiangensis (a Flavobacterium), Leptothrix discophora (a beta-Proteobacterium), and a number of uncultured groups: two beta-Proteobacteria, an unclassified Proteobacterium, three sequences from Actinobacteria, and a Cyanobacterium. Fluorescence in situ hybridization (FISH), however, demonstrated that there were minor but significant fluctuations in different groups of bacteria with vertical depth in the water column. It showed that the beta-Proteobacteria accounted for between 26.4 and 71.5%, the alpha-Proteobacteria 2.3-10.6%, the gamma-Proteobacteria 0-29.6%, and the Cytophaga-Flavobacterium group 1.8-23.5% of cells hybridizing to a universal probe. This study reports the first description of the community structure of an oligotrophic Antarctic freshwater lake as determined by PCR-dependent and PCR-independent molecular techniques. It also suggests that the bacterioplankton community of Moss Lake contains classes of bacteria known to be important in freshwater systems elsewhere in the world.
doi_str_mv 10.1007/s00248-002-2039-3
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_71304893</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>4287734</jstor_id><sourcerecordid>4287734</sourcerecordid><originalsourceid>FETCH-LOGICAL-c437t-45a91e64fd89e8147b0250be87d4b48873e043bde9174982a91532ed5445b2be3</originalsourceid><addsrcrecordid>eNqNkl1rFDEUhgdR7Fr9AYJIEJQWHM3XTJLLdrsfhZUKVfBuyMycrdnOJGuSga4_1V9jprtY8EZvTjjJc95zTniz7CXBHwjG4mPAmHKZp5hTzFTOHmUTwhnNieTfHmcTjFWRs5LKo-xZCBuMiSgpe5odESqYwkJOsl_nuongjdt22t5GZ9HU9f1gTdyh6-iHJg4ekLFIo0_am2h6QGc2at9E06Crzty46N32e0pW-hZQO3hjbxL9eRRtkVujpetcb-5MeI90QBeQ2vXGQovqXcqsjvuShdetARvRAjo066C513Ueggno5GKxmJ0ibVs074bxsgHb3A8WTBzQcld705qfOpq0wsn88np5-jx7stZdgBeH8zj7Op99mS7z1dXicnq2yhvORMx5oRWBkq9bqUASLmpMC1yDFC2vuZSCAeasbkERwZWkiS4YhbbgvKhpDew4e7fX3Xr3Y4AQq96k8br0oeCGUAnCMJeK_RMkUhVMqfI_QFyWRUkS-OYvcOMGb9O2laRECUUVTxDZQ413IXhYV1tveu13FcHV6KNq76MqxWr0UTWO-vogPNQ9tA8VB-Mk4O0B0KHR3dpr25jwwBWEUElH7tWe24To_J93TqUQjLPfY0jbQA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>821979294</pqid></control><display><type>article</type><title>Bacterioplankton Community Structure in a Maritime Antarctic Oligotrophic Lake during a Period of Holomixis, as Determined by Denaturing Gradient Gel Electrophoresis (DGGE) and Fluorescence in situ Hybridization (FISH)</title><source>MEDLINE</source><source>Jstor Complete Legacy</source><source>Springer Nature - Complete Springer Journals</source><creator>Pearce, D. A.</creator><creatorcontrib>Pearce, D. A.</creatorcontrib><description>The bacterioplankton community structure in Moss Lake, a maritime Antarctic oligotrophic lake, was determined with vertical depth in the water column, during the ice-free period on Signy Island in the South Orkney Islands. Bacterioplankton community structure was determined using a combination of direct counting of 4′,6-diamidino-2-phenylindole (DAPI) stained cells, PCR amplification of 16S rRNA gene fragments, denaturing gradient gel electrophoresis (DGGE) and in situ hybridization with group-specific, fluorescently labeled oligonucleotide probes. Using PCR amplification of 16S rRNA gene fragments and DGGE, the bacterioplankton community composition was shown to be constant with vertical depth in the water column. Specific bacterioplankton species identified through cloning and sequencing the DGGE products obtained were Flavobacterium xinjiangensis (a Flavobacterium), Leptothrix discophora (a beta-Proteobacterium), and a number of uncultured groups: two beta-Proteobacteria, an unclassified Proteobacterium, three sequences from Actinobacteria, and a Cyanobacterium. Fluorescence in situ hybridization (FISH), however, demonstrated that there were minor but significant fluctuations in different groups of bacteria with vertical depth in the water column. It showed that the beta-Proteobacteria accounted for between 26.4 and 71.5%, the alpha-Proteobacteria 2.3-10.6%, the gamma-Proteobacteria 0-29.6%, and the Cytophaga-Flavobacterium group 1.8-23.5% of cells hybridizing to a universal probe. This study reports the first description of the community structure of an oligotrophic Antarctic freshwater lake as determined by PCR-dependent and PCR-independent molecular techniques. It also suggests that the bacterioplankton community of Moss Lake contains classes of bacteria known to be important in freshwater systems elsewhere in the world.</description><identifier>ISSN: 0095-3628</identifier><identifier>EISSN: 1432-184X</identifier><identifier>DOI: 10.1007/s00248-002-2039-3</identifier><identifier>PMID: 12739078</identifier><identifier>CODEN: MCBEBU</identifier><language>eng</language><publisher>New York, NY: Springer-Verlag New York Inc</publisher><subject>Animal, plant and microbial ecology ; Antarctic Regions ; Bacteria ; Bacterial Physiological Phenomena ; Bacteriological methods and techniques used in bacteriology ; Bacteriology ; Bacterioplankton ; Biological and medical sciences ; Cloning ; Colony Count, Microbial ; Community composition ; Community structure ; denaturing gradient gel electrophoresis ; DNA Primers ; Ecosystem ; Electrophoresis ; Electrophoresis, Polyacrylamide Gel ; Flavobacterium xinjiangensis ; Fluorescence ; Fresh water ; Fresh Water - microbiology ; Freshwater ; Freshwater lakes ; Fundamental and applied biological sciences. Psychology ; Gels ; holomixis ; Hybridization ; In situ hybridization ; In Situ Hybridization, Fluorescence ; Lakes ; Leptothrix discophora ; Microbial ecology ; Microbiology ; Mosses ; Oligotrophic lakes ; Plankton - physiology ; Polymerase Chain Reaction ; RNA, Ribosomal, 16S - genetics ; Various environments (extraatmospheric space, air, water) ; Water column ; Water depth</subject><ispartof>Microbial ecology, 2003-07, Vol.46 (1), p.92-105</ispartof><rights>Copyright 2003 Springer-Verlag New York Inc.</rights><rights>2003 INIST-CNRS</rights><rights>Springer-Verlag New York Inc. 2003</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c437t-45a91e64fd89e8147b0250be87d4b48873e043bde9174982a91532ed5445b2be3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/4287734$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/4287734$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>315,781,785,804,27929,27930,58022,58255</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=15112828$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/12739078$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Pearce, D. A.</creatorcontrib><title>Bacterioplankton Community Structure in a Maritime Antarctic Oligotrophic Lake during a Period of Holomixis, as Determined by Denaturing Gradient Gel Electrophoresis (DGGE) and Fluorescence in situ Hybridization (FISH)</title><title>Microbial ecology</title><addtitle>Microb Ecol</addtitle><description>The bacterioplankton community structure in Moss Lake, a maritime Antarctic oligotrophic lake, was determined with vertical depth in the water column, during the ice-free period on Signy Island in the South Orkney Islands. Bacterioplankton community structure was determined using a combination of direct counting of 4′,6-diamidino-2-phenylindole (DAPI) stained cells, PCR amplification of 16S rRNA gene fragments, denaturing gradient gel electrophoresis (DGGE) and in situ hybridization with group-specific, fluorescently labeled oligonucleotide probes. Using PCR amplification of 16S rRNA gene fragments and DGGE, the bacterioplankton community composition was shown to be constant with vertical depth in the water column. Specific bacterioplankton species identified through cloning and sequencing the DGGE products obtained were Flavobacterium xinjiangensis (a Flavobacterium), Leptothrix discophora (a beta-Proteobacterium), and a number of uncultured groups: two beta-Proteobacteria, an unclassified Proteobacterium, three sequences from Actinobacteria, and a Cyanobacterium. Fluorescence in situ hybridization (FISH), however, demonstrated that there were minor but significant fluctuations in different groups of bacteria with vertical depth in the water column. It showed that the beta-Proteobacteria accounted for between 26.4 and 71.5%, the alpha-Proteobacteria 2.3-10.6%, the gamma-Proteobacteria 0-29.6%, and the Cytophaga-Flavobacterium group 1.8-23.5% of cells hybridizing to a universal probe. This study reports the first description of the community structure of an oligotrophic Antarctic freshwater lake as determined by PCR-dependent and PCR-independent molecular techniques. It also suggests that the bacterioplankton community of Moss Lake contains classes of bacteria known to be important in freshwater systems elsewhere in the world.</description><subject>Animal, plant and microbial ecology</subject><subject>Antarctic Regions</subject><subject>Bacteria</subject><subject>Bacterial Physiological Phenomena</subject><subject>Bacteriological methods and techniques used in bacteriology</subject><subject>Bacteriology</subject><subject>Bacterioplankton</subject><subject>Biological and medical sciences</subject><subject>Cloning</subject><subject>Colony Count, Microbial</subject><subject>Community composition</subject><subject>Community structure</subject><subject>denaturing gradient gel electrophoresis</subject><subject>DNA Primers</subject><subject>Ecosystem</subject><subject>Electrophoresis</subject><subject>Electrophoresis, Polyacrylamide Gel</subject><subject>Flavobacterium xinjiangensis</subject><subject>Fluorescence</subject><subject>Fresh water</subject><subject>Fresh Water - microbiology</subject><subject>Freshwater</subject><subject>Freshwater lakes</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Gels</subject><subject>holomixis</subject><subject>Hybridization</subject><subject>In situ hybridization</subject><subject>In Situ Hybridization, Fluorescence</subject><subject>Lakes</subject><subject>Leptothrix discophora</subject><subject>Microbial ecology</subject><subject>Microbiology</subject><subject>Mosses</subject><subject>Oligotrophic lakes</subject><subject>Plankton - physiology</subject><subject>Polymerase Chain Reaction</subject><subject>RNA, Ribosomal, 16S - genetics</subject><subject>Various environments (extraatmospheric space, air, water)</subject><subject>Water column</subject><subject>Water depth</subject><issn>0095-3628</issn><issn>1432-184X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqNkl1rFDEUhgdR7Fr9AYJIEJQWHM3XTJLLdrsfhZUKVfBuyMycrdnOJGuSga4_1V9jprtY8EZvTjjJc95zTniz7CXBHwjG4mPAmHKZp5hTzFTOHmUTwhnNieTfHmcTjFWRs5LKo-xZCBuMiSgpe5odESqYwkJOsl_nuongjdt22t5GZ9HU9f1gTdyh6-iHJg4ekLFIo0_am2h6QGc2at9E06Crzty46N32e0pW-hZQO3hjbxL9eRRtkVujpetcb-5MeI90QBeQ2vXGQovqXcqsjvuShdetARvRAjo066C513Ueggno5GKxmJ0ibVs074bxsgHb3A8WTBzQcld705qfOpq0wsn88np5-jx7stZdgBeH8zj7Op99mS7z1dXicnq2yhvORMx5oRWBkq9bqUASLmpMC1yDFC2vuZSCAeasbkERwZWkiS4YhbbgvKhpDew4e7fX3Xr3Y4AQq96k8br0oeCGUAnCMJeK_RMkUhVMqfI_QFyWRUkS-OYvcOMGb9O2laRECUUVTxDZQ413IXhYV1tveu13FcHV6KNq76MqxWr0UTWO-vogPNQ9tA8VB-Mk4O0B0KHR3dpr25jwwBWEUElH7tWe24To_J93TqUQjLPfY0jbQA</recordid><startdate>20030701</startdate><enddate>20030701</enddate><creator>Pearce, D. A.</creator><general>Springer-Verlag New York Inc</general><general>Springer</general><general>Springer Nature B.V</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7SN</scope><scope>7T7</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>H95</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>L.G</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>RC3</scope><scope>7UA</scope><scope>7X8</scope></search><sort><creationdate>20030701</creationdate><title>Bacterioplankton Community Structure in a Maritime Antarctic Oligotrophic Lake during a Period of Holomixis, as Determined by Denaturing Gradient Gel Electrophoresis (DGGE) and Fluorescence in situ Hybridization (FISH)</title><author>Pearce, D. A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c437t-45a91e64fd89e8147b0250be87d4b48873e043bde9174982a91532ed5445b2be3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Animal, plant and microbial ecology</topic><topic>Antarctic Regions</topic><topic>Bacteria</topic><topic>Bacterial Physiological Phenomena</topic><topic>Bacteriological methods and techniques used in bacteriology</topic><topic>Bacteriology</topic><topic>Bacterioplankton</topic><topic>Biological and medical sciences</topic><topic>Cloning</topic><topic>Colony Count, Microbial</topic><topic>Community composition</topic><topic>Community structure</topic><topic>denaturing gradient gel electrophoresis</topic><topic>DNA Primers</topic><topic>Ecosystem</topic><topic>Electrophoresis</topic><topic>Electrophoresis, Polyacrylamide Gel</topic><topic>Flavobacterium xinjiangensis</topic><topic>Fluorescence</topic><topic>Fresh water</topic><topic>Fresh Water - microbiology</topic><topic>Freshwater</topic><topic>Freshwater lakes</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Gels</topic><topic>holomixis</topic><topic>Hybridization</topic><topic>In situ hybridization</topic><topic>In Situ Hybridization, Fluorescence</topic><topic>Lakes</topic><topic>Leptothrix discophora</topic><topic>Microbial ecology</topic><topic>Microbiology</topic><topic>Mosses</topic><topic>Oligotrophic lakes</topic><topic>Plankton - physiology</topic><topic>Polymerase Chain Reaction</topic><topic>RNA, Ribosomal, 16S - genetics</topic><topic>Various environments (extraatmospheric space, air, water)</topic><topic>Water column</topic><topic>Water depth</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pearce, D. A.</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Ecology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Virology and AIDS Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection (ProQuest)</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 1: Biological Sciences &amp; Living Resources</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Genetics Abstracts</collection><collection>Water Resources Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Microbial ecology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pearce, D. A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bacterioplankton Community Structure in a Maritime Antarctic Oligotrophic Lake during a Period of Holomixis, as Determined by Denaturing Gradient Gel Electrophoresis (DGGE) and Fluorescence in situ Hybridization (FISH)</atitle><jtitle>Microbial ecology</jtitle><addtitle>Microb Ecol</addtitle><date>2003-07-01</date><risdate>2003</risdate><volume>46</volume><issue>1</issue><spage>92</spage><epage>105</epage><pages>92-105</pages><issn>0095-3628</issn><eissn>1432-184X</eissn><coden>MCBEBU</coden><abstract>The bacterioplankton community structure in Moss Lake, a maritime Antarctic oligotrophic lake, was determined with vertical depth in the water column, during the ice-free period on Signy Island in the South Orkney Islands. Bacterioplankton community structure was determined using a combination of direct counting of 4′,6-diamidino-2-phenylindole (DAPI) stained cells, PCR amplification of 16S rRNA gene fragments, denaturing gradient gel electrophoresis (DGGE) and in situ hybridization with group-specific, fluorescently labeled oligonucleotide probes. Using PCR amplification of 16S rRNA gene fragments and DGGE, the bacterioplankton community composition was shown to be constant with vertical depth in the water column. Specific bacterioplankton species identified through cloning and sequencing the DGGE products obtained were Flavobacterium xinjiangensis (a Flavobacterium), Leptothrix discophora (a beta-Proteobacterium), and a number of uncultured groups: two beta-Proteobacteria, an unclassified Proteobacterium, three sequences from Actinobacteria, and a Cyanobacterium. Fluorescence in situ hybridization (FISH), however, demonstrated that there were minor but significant fluctuations in different groups of bacteria with vertical depth in the water column. It showed that the beta-Proteobacteria accounted for between 26.4 and 71.5%, the alpha-Proteobacteria 2.3-10.6%, the gamma-Proteobacteria 0-29.6%, and the Cytophaga-Flavobacterium group 1.8-23.5% of cells hybridizing to a universal probe. This study reports the first description of the community structure of an oligotrophic Antarctic freshwater lake as determined by PCR-dependent and PCR-independent molecular techniques. It also suggests that the bacterioplankton community of Moss Lake contains classes of bacteria known to be important in freshwater systems elsewhere in the world.</abstract><cop>New York, NY</cop><pub>Springer-Verlag New York Inc</pub><pmid>12739078</pmid><doi>10.1007/s00248-002-2039-3</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0095-3628
ispartof Microbial ecology, 2003-07, Vol.46 (1), p.92-105
issn 0095-3628
1432-184X
language eng
recordid cdi_proquest_miscellaneous_71304893
source MEDLINE; Jstor Complete Legacy; Springer Nature - Complete Springer Journals
subjects Animal, plant and microbial ecology
Antarctic Regions
Bacteria
Bacterial Physiological Phenomena
Bacteriological methods and techniques used in bacteriology
Bacteriology
Bacterioplankton
Biological and medical sciences
Cloning
Colony Count, Microbial
Community composition
Community structure
denaturing gradient gel electrophoresis
DNA Primers
Ecosystem
Electrophoresis
Electrophoresis, Polyacrylamide Gel
Flavobacterium xinjiangensis
Fluorescence
Fresh water
Fresh Water - microbiology
Freshwater
Freshwater lakes
Fundamental and applied biological sciences. Psychology
Gels
holomixis
Hybridization
In situ hybridization
In Situ Hybridization, Fluorescence
Lakes
Leptothrix discophora
Microbial ecology
Microbiology
Mosses
Oligotrophic lakes
Plankton - physiology
Polymerase Chain Reaction
RNA, Ribosomal, 16S - genetics
Various environments (extraatmospheric space, air, water)
Water column
Water depth
title Bacterioplankton Community Structure in a Maritime Antarctic Oligotrophic Lake during a Period of Holomixis, as Determined by Denaturing Gradient Gel Electrophoresis (DGGE) and Fluorescence in situ Hybridization (FISH)
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-11T16%3A57%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bacterioplankton%20Community%20Structure%20in%20a%20Maritime%20Antarctic%20Oligotrophic%20Lake%20during%20a%20Period%20of%20Holomixis,%20as%20Determined%20by%20Denaturing%20Gradient%20Gel%20Electrophoresis%20(DGGE)%20and%20Fluorescence%20in%20situ%20Hybridization%20(FISH)&rft.jtitle=Microbial%20ecology&rft.au=Pearce,%20D.%20A.&rft.date=2003-07-01&rft.volume=46&rft.issue=1&rft.spage=92&rft.epage=105&rft.pages=92-105&rft.issn=0095-3628&rft.eissn=1432-184X&rft.coden=MCBEBU&rft_id=info:doi/10.1007/s00248-002-2039-3&rft_dat=%3Cjstor_proqu%3E4287734%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=821979294&rft_id=info:pmid/12739078&rft_jstor_id=4287734&rfr_iscdi=true