Genetic Engineering of an Allosterically Based Glucose Indicator Protein for Continuous Glucose Monitoring by Fluorescence Resonance Energy Transfer
Real-time monitoring of blood glucose could vastly reduce a number of the long-term complications associated with diabetes. In this article, we present a novel approach that relies on a glucose-binding protein engineered such that a 20% reduction in fluorescence due to the fluorescence resonance ene...
Gespeichert in:
Veröffentlicht in: | Analytical chemistry (Washington) 2003-07, Vol.75 (14), p.3451-3459 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3459 |
---|---|
container_issue | 14 |
container_start_page | 3451 |
container_title | Analytical chemistry (Washington) |
container_volume | 75 |
creator | Ye, Kaiming Schultz, Jerome S |
description | Real-time monitoring of blood glucose could vastly reduce a number of the long-term complications associated with diabetes. In this article, we present a novel approach that relies on a glucose-binding protein engineered such that a 20% reduction in fluorescence due to the fluorescence resonance energy transfer occurs as a result of glucose binding. This change in fluorescence provides a signal for the optical detection of glucose. The novel glucose indicator protein (GIP) was created by fusing two fluorescent reporter proteins (green fluorescent proteins) to each end of an Escherichia coli glucose-binding protein in such a manner that the spatial separation between the fluorescent moieties changes when glucose binds, thus generating a distinct optical signal that can be used for glucose detection. By placing the GIP within a dialysis hollow fiber sensor, a microsensor has been developed for continuous monitoring of glucose. The sensor had a response time to sudden glucose changes within 100 s and was reversible. The sensor was shown to have an optional range on the order of 10 μM of glucose. |
doi_str_mv | 10.1021/ac034022q |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_71287475</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>19229742</sourcerecordid><originalsourceid>FETCH-LOGICAL-a476t-c49db8463e195e6e1f4aa2737ac8d8b813b76bf8bcb04e7b1abec7df40ac58bb3</originalsourceid><addsrcrecordid>eNqFkcFuEzEQhi0EoqFw4AWQLyBxWLC9Xtt7bKM0VApQlXC2bO9s5LKxW3tXIu_BA-MoUXJB4jSj8ad_xv-P0FtKPlHC6GfjSM0JY0_P0Iw2jFRCKfYczQghdcUkIRfoVc4PhFBKqHiJLihvJKGtnKE_SwgweocXYeMDQPJhg2OPTcBXwxDzWCbODMMOX5sMHV4Ok4sZ8G3oynyMCd-lOIIPuC_9PIbRhylO-QR-jcEXbC9rd_hmmGKC7CA4wPeQYzD7bhEgbXZ4nUzIPaTX6EVvhgxvjvUS_bxZrOdfqtX35e38alUZLsVYOd52VnFRA20bEEB7bgyTtTROdcoqWlspbK-ss4SDtNRYcLLrOTGuUdbWl-jDQfcxxacJ8qi3vtw2DCZA-YOWlCnJZfNfkLaMtZKzAn48gC7FnBP0-jH5rUk7TYneZ6VPWRX23VF0slvozuQxnAK8PwImlwz64o7z-cwJKgSt90urA-dLXL9P7yb90qK40ej13Y9Cz1ffGF_p-7OucVk_xCmFYvI_DvwLAYi6Kg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>19229742</pqid></control><display><type>article</type><title>Genetic Engineering of an Allosterically Based Glucose Indicator Protein for Continuous Glucose Monitoring by Fluorescence Resonance Energy Transfer</title><source>MEDLINE</source><source>ACS Publications</source><creator>Ye, Kaiming ; Schultz, Jerome S</creator><creatorcontrib>Ye, Kaiming ; Schultz, Jerome S</creatorcontrib><description>Real-time monitoring of blood glucose could vastly reduce a number of the long-term complications associated with diabetes. In this article, we present a novel approach that relies on a glucose-binding protein engineered such that a 20% reduction in fluorescence due to the fluorescence resonance energy transfer occurs as a result of glucose binding. This change in fluorescence provides a signal for the optical detection of glucose. The novel glucose indicator protein (GIP) was created by fusing two fluorescent reporter proteins (green fluorescent proteins) to each end of an Escherichia coli glucose-binding protein in such a manner that the spatial separation between the fluorescent moieties changes when glucose binds, thus generating a distinct optical signal that can be used for glucose detection. By placing the GIP within a dialysis hollow fiber sensor, a microsensor has been developed for continuous monitoring of glucose. The sensor had a response time to sudden glucose changes within 100 s and was reversible. The sensor was shown to have an optional range on the order of 10 μM of glucose.</description><identifier>ISSN: 0003-2700</identifier><identifier>EISSN: 1520-6882</identifier><identifier>DOI: 10.1021/ac034022q</identifier><identifier>PMID: 14570197</identifier><identifier>CODEN: ANCHAM</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>Amino Acid Sequence ; Analytical biochemistry: general aspects, technics, instrumentation ; Analytical chemistry ; Analytical, structural and metabolic biochemistry ; Biological and medical sciences ; Biosensing Techniques ; Chemistry ; Electrophoresis, Polyacrylamide Gel ; Escherichia coli ; Escherichia coli - genetics ; Escherichia coli - metabolism ; Escherichia coli Proteins - chemistry ; Escherichia coli Proteins - isolation & purification ; Exact sciences and technology ; Fluorescence Resonance Energy Transfer ; Fundamental and applied biological sciences. Psychology ; General, instrumentation ; Genetic Engineering ; glucose ; Glucose - analysis ; glucose indicator protein ; Indicators and Reagents ; Molecular Sequence Data ; Protein Binding ; Protein Conformation ; Recombinant Fusion Proteins - chemistry ; Recombinant Fusion Proteins - isolation & purification ; Recombinant Proteins - chemistry ; Recombinant Proteins - isolation & purification ; Spectrometric and optical methods</subject><ispartof>Analytical chemistry (Washington), 2003-07, Vol.75 (14), p.3451-3459</ispartof><rights>Copyright © 2003 American Chemical Society</rights><rights>2005 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a476t-c49db8463e195e6e1f4aa2737ac8d8b813b76bf8bcb04e7b1abec7df40ac58bb3</citedby><cites>FETCH-LOGICAL-a476t-c49db8463e195e6e1f4aa2737ac8d8b813b76bf8bcb04e7b1abec7df40ac58bb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/ac034022q$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/ac034022q$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>315,781,785,2766,27081,27929,27930,56743,56793</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=16166132$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/14570197$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ye, Kaiming</creatorcontrib><creatorcontrib>Schultz, Jerome S</creatorcontrib><title>Genetic Engineering of an Allosterically Based Glucose Indicator Protein for Continuous Glucose Monitoring by Fluorescence Resonance Energy Transfer</title><title>Analytical chemistry (Washington)</title><addtitle>Anal. Chem</addtitle><description>Real-time monitoring of blood glucose could vastly reduce a number of the long-term complications associated with diabetes. In this article, we present a novel approach that relies on a glucose-binding protein engineered such that a 20% reduction in fluorescence due to the fluorescence resonance energy transfer occurs as a result of glucose binding. This change in fluorescence provides a signal for the optical detection of glucose. The novel glucose indicator protein (GIP) was created by fusing two fluorescent reporter proteins (green fluorescent proteins) to each end of an Escherichia coli glucose-binding protein in such a manner that the spatial separation between the fluorescent moieties changes when glucose binds, thus generating a distinct optical signal that can be used for glucose detection. By placing the GIP within a dialysis hollow fiber sensor, a microsensor has been developed for continuous monitoring of glucose. The sensor had a response time to sudden glucose changes within 100 s and was reversible. The sensor was shown to have an optional range on the order of 10 μM of glucose.</description><subject>Amino Acid Sequence</subject><subject>Analytical biochemistry: general aspects, technics, instrumentation</subject><subject>Analytical chemistry</subject><subject>Analytical, structural and metabolic biochemistry</subject><subject>Biological and medical sciences</subject><subject>Biosensing Techniques</subject><subject>Chemistry</subject><subject>Electrophoresis, Polyacrylamide Gel</subject><subject>Escherichia coli</subject><subject>Escherichia coli - genetics</subject><subject>Escherichia coli - metabolism</subject><subject>Escherichia coli Proteins - chemistry</subject><subject>Escherichia coli Proteins - isolation & purification</subject><subject>Exact sciences and technology</subject><subject>Fluorescence Resonance Energy Transfer</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>General, instrumentation</subject><subject>Genetic Engineering</subject><subject>glucose</subject><subject>Glucose - analysis</subject><subject>glucose indicator protein</subject><subject>Indicators and Reagents</subject><subject>Molecular Sequence Data</subject><subject>Protein Binding</subject><subject>Protein Conformation</subject><subject>Recombinant Fusion Proteins - chemistry</subject><subject>Recombinant Fusion Proteins - isolation & purification</subject><subject>Recombinant Proteins - chemistry</subject><subject>Recombinant Proteins - isolation & purification</subject><subject>Spectrometric and optical methods</subject><issn>0003-2700</issn><issn>1520-6882</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkcFuEzEQhi0EoqFw4AWQLyBxWLC9Xtt7bKM0VApQlXC2bO9s5LKxW3tXIu_BA-MoUXJB4jSj8ad_xv-P0FtKPlHC6GfjSM0JY0_P0Iw2jFRCKfYczQghdcUkIRfoVc4PhFBKqHiJLihvJKGtnKE_SwgweocXYeMDQPJhg2OPTcBXwxDzWCbODMMOX5sMHV4Ok4sZ8G3oynyMCd-lOIIPuC_9PIbRhylO-QR-jcEXbC9rd_hmmGKC7CA4wPeQYzD7bhEgbXZ4nUzIPaTX6EVvhgxvjvUS_bxZrOdfqtX35e38alUZLsVYOd52VnFRA20bEEB7bgyTtTROdcoqWlspbK-ss4SDtNRYcLLrOTGuUdbWl-jDQfcxxacJ8qi3vtw2DCZA-YOWlCnJZfNfkLaMtZKzAn48gC7FnBP0-jH5rUk7TYneZ6VPWRX23VF0slvozuQxnAK8PwImlwz64o7z-cwJKgSt90urA-dLXL9P7yb90qK40ej13Y9Cz1ffGF_p-7OucVk_xCmFYvI_DvwLAYi6Kg</recordid><startdate>20030715</startdate><enddate>20030715</enddate><creator>Ye, Kaiming</creator><creator>Schultz, Jerome S</creator><general>American Chemical Society</general><scope>BSCLL</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>20030715</creationdate><title>Genetic Engineering of an Allosterically Based Glucose Indicator Protein for Continuous Glucose Monitoring by Fluorescence Resonance Energy Transfer</title><author>Ye, Kaiming ; Schultz, Jerome S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a476t-c49db8463e195e6e1f4aa2737ac8d8b813b76bf8bcb04e7b1abec7df40ac58bb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Amino Acid Sequence</topic><topic>Analytical biochemistry: general aspects, technics, instrumentation</topic><topic>Analytical chemistry</topic><topic>Analytical, structural and metabolic biochemistry</topic><topic>Biological and medical sciences</topic><topic>Biosensing Techniques</topic><topic>Chemistry</topic><topic>Electrophoresis, Polyacrylamide Gel</topic><topic>Escherichia coli</topic><topic>Escherichia coli - genetics</topic><topic>Escherichia coli - metabolism</topic><topic>Escherichia coli Proteins - chemistry</topic><topic>Escherichia coli Proteins - isolation & purification</topic><topic>Exact sciences and technology</topic><topic>Fluorescence Resonance Energy Transfer</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>General, instrumentation</topic><topic>Genetic Engineering</topic><topic>glucose</topic><topic>Glucose - analysis</topic><topic>glucose indicator protein</topic><topic>Indicators and Reagents</topic><topic>Molecular Sequence Data</topic><topic>Protein Binding</topic><topic>Protein Conformation</topic><topic>Recombinant Fusion Proteins - chemistry</topic><topic>Recombinant Fusion Proteins - isolation & purification</topic><topic>Recombinant Proteins - chemistry</topic><topic>Recombinant Proteins - isolation & purification</topic><topic>Spectrometric and optical methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ye, Kaiming</creatorcontrib><creatorcontrib>Schultz, Jerome S</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Analytical chemistry (Washington)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ye, Kaiming</au><au>Schultz, Jerome S</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Genetic Engineering of an Allosterically Based Glucose Indicator Protein for Continuous Glucose Monitoring by Fluorescence Resonance Energy Transfer</atitle><jtitle>Analytical chemistry (Washington)</jtitle><addtitle>Anal. Chem</addtitle><date>2003-07-15</date><risdate>2003</risdate><volume>75</volume><issue>14</issue><spage>3451</spage><epage>3459</epage><pages>3451-3459</pages><issn>0003-2700</issn><eissn>1520-6882</eissn><coden>ANCHAM</coden><abstract>Real-time monitoring of blood glucose could vastly reduce a number of the long-term complications associated with diabetes. In this article, we present a novel approach that relies on a glucose-binding protein engineered such that a 20% reduction in fluorescence due to the fluorescence resonance energy transfer occurs as a result of glucose binding. This change in fluorescence provides a signal for the optical detection of glucose. The novel glucose indicator protein (GIP) was created by fusing two fluorescent reporter proteins (green fluorescent proteins) to each end of an Escherichia coli glucose-binding protein in such a manner that the spatial separation between the fluorescent moieties changes when glucose binds, thus generating a distinct optical signal that can be used for glucose detection. By placing the GIP within a dialysis hollow fiber sensor, a microsensor has been developed for continuous monitoring of glucose. The sensor had a response time to sudden glucose changes within 100 s and was reversible. The sensor was shown to have an optional range on the order of 10 μM of glucose.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><pmid>14570197</pmid><doi>10.1021/ac034022q</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0003-2700 |
ispartof | Analytical chemistry (Washington), 2003-07, Vol.75 (14), p.3451-3459 |
issn | 0003-2700 1520-6882 |
language | eng |
recordid | cdi_proquest_miscellaneous_71287475 |
source | MEDLINE; ACS Publications |
subjects | Amino Acid Sequence Analytical biochemistry: general aspects, technics, instrumentation Analytical chemistry Analytical, structural and metabolic biochemistry Biological and medical sciences Biosensing Techniques Chemistry Electrophoresis, Polyacrylamide Gel Escherichia coli Escherichia coli - genetics Escherichia coli - metabolism Escherichia coli Proteins - chemistry Escherichia coli Proteins - isolation & purification Exact sciences and technology Fluorescence Resonance Energy Transfer Fundamental and applied biological sciences. Psychology General, instrumentation Genetic Engineering glucose Glucose - analysis glucose indicator protein Indicators and Reagents Molecular Sequence Data Protein Binding Protein Conformation Recombinant Fusion Proteins - chemistry Recombinant Fusion Proteins - isolation & purification Recombinant Proteins - chemistry Recombinant Proteins - isolation & purification Spectrometric and optical methods |
title | Genetic Engineering of an Allosterically Based Glucose Indicator Protein for Continuous Glucose Monitoring by Fluorescence Resonance Energy Transfer |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-12T18%3A07%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Genetic%20Engineering%20of%20an%20Allosterically%20Based%20Glucose%20Indicator%20Protein%20for%20Continuous%20Glucose%20Monitoring%20by%20Fluorescence%20Resonance%20Energy%20Transfer&rft.jtitle=Analytical%20chemistry%20(Washington)&rft.au=Ye,%20Kaiming&rft.date=2003-07-15&rft.volume=75&rft.issue=14&rft.spage=3451&rft.epage=3459&rft.pages=3451-3459&rft.issn=0003-2700&rft.eissn=1520-6882&rft.coden=ANCHAM&rft_id=info:doi/10.1021/ac034022q&rft_dat=%3Cproquest_cross%3E19229742%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=19229742&rft_id=info:pmid/14570197&rfr_iscdi=true |