Genetic Engineering of an Allosterically Based Glucose Indicator Protein for Continuous Glucose Monitoring by Fluorescence Resonance Energy Transfer

Real-time monitoring of blood glucose could vastly reduce a number of the long-term complications associated with diabetes. In this article, we present a novel approach that relies on a glucose-binding protein engineered such that a 20% reduction in fluorescence due to the fluorescence resonance ene...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Analytical chemistry (Washington) 2003-07, Vol.75 (14), p.3451-3459
Hauptverfasser: Ye, Kaiming, Schultz, Jerome S
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3459
container_issue 14
container_start_page 3451
container_title Analytical chemistry (Washington)
container_volume 75
creator Ye, Kaiming
Schultz, Jerome S
description Real-time monitoring of blood glucose could vastly reduce a number of the long-term complications associated with diabetes. In this article, we present a novel approach that relies on a glucose-binding protein engineered such that a 20% reduction in fluorescence due to the fluorescence resonance energy transfer occurs as a result of glucose binding. This change in fluorescence provides a signal for the optical detection of glucose. The novel glucose indicator protein (GIP) was created by fusing two fluorescent reporter proteins (green fluorescent proteins) to each end of an Escherichia coli glucose-binding protein in such a manner that the spatial separation between the fluorescent moieties changes when glucose binds, thus generating a distinct optical signal that can be used for glucose detection. By placing the GIP within a dialysis hollow fiber sensor, a microsensor has been developed for continuous monitoring of glucose. The sensor had a response time to sudden glucose changes within 100 s and was reversible. The sensor was shown to have an optional range on the order of 10 μM of glucose.
doi_str_mv 10.1021/ac034022q
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_71287475</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>19229742</sourcerecordid><originalsourceid>FETCH-LOGICAL-a476t-c49db8463e195e6e1f4aa2737ac8d8b813b76bf8bcb04e7b1abec7df40ac58bb3</originalsourceid><addsrcrecordid>eNqFkcFuEzEQhi0EoqFw4AWQLyBxWLC9Xtt7bKM0VApQlXC2bO9s5LKxW3tXIu_BA-MoUXJB4jSj8ad_xv-P0FtKPlHC6GfjSM0JY0_P0Iw2jFRCKfYczQghdcUkIRfoVc4PhFBKqHiJLihvJKGtnKE_SwgweocXYeMDQPJhg2OPTcBXwxDzWCbODMMOX5sMHV4Ok4sZ8G3oynyMCd-lOIIPuC_9PIbRhylO-QR-jcEXbC9rd_hmmGKC7CA4wPeQYzD7bhEgbXZ4nUzIPaTX6EVvhgxvjvUS_bxZrOdfqtX35e38alUZLsVYOd52VnFRA20bEEB7bgyTtTROdcoqWlspbK-ss4SDtNRYcLLrOTGuUdbWl-jDQfcxxacJ8qi3vtw2DCZA-YOWlCnJZfNfkLaMtZKzAn48gC7FnBP0-jH5rUk7TYneZ6VPWRX23VF0slvozuQxnAK8PwImlwz64o7z-cwJKgSt90urA-dLXL9P7yb90qK40ej13Y9Cz1ffGF_p-7OucVk_xCmFYvI_DvwLAYi6Kg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>19229742</pqid></control><display><type>article</type><title>Genetic Engineering of an Allosterically Based Glucose Indicator Protein for Continuous Glucose Monitoring by Fluorescence Resonance Energy Transfer</title><source>MEDLINE</source><source>ACS Publications</source><creator>Ye, Kaiming ; Schultz, Jerome S</creator><creatorcontrib>Ye, Kaiming ; Schultz, Jerome S</creatorcontrib><description>Real-time monitoring of blood glucose could vastly reduce a number of the long-term complications associated with diabetes. In this article, we present a novel approach that relies on a glucose-binding protein engineered such that a 20% reduction in fluorescence due to the fluorescence resonance energy transfer occurs as a result of glucose binding. This change in fluorescence provides a signal for the optical detection of glucose. The novel glucose indicator protein (GIP) was created by fusing two fluorescent reporter proteins (green fluorescent proteins) to each end of an Escherichia coli glucose-binding protein in such a manner that the spatial separation between the fluorescent moieties changes when glucose binds, thus generating a distinct optical signal that can be used for glucose detection. By placing the GIP within a dialysis hollow fiber sensor, a microsensor has been developed for continuous monitoring of glucose. The sensor had a response time to sudden glucose changes within 100 s and was reversible. The sensor was shown to have an optional range on the order of 10 μM of glucose.</description><identifier>ISSN: 0003-2700</identifier><identifier>EISSN: 1520-6882</identifier><identifier>DOI: 10.1021/ac034022q</identifier><identifier>PMID: 14570197</identifier><identifier>CODEN: ANCHAM</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>Amino Acid Sequence ; Analytical biochemistry: general aspects, technics, instrumentation ; Analytical chemistry ; Analytical, structural and metabolic biochemistry ; Biological and medical sciences ; Biosensing Techniques ; Chemistry ; Electrophoresis, Polyacrylamide Gel ; Escherichia coli ; Escherichia coli - genetics ; Escherichia coli - metabolism ; Escherichia coli Proteins - chemistry ; Escherichia coli Proteins - isolation &amp; purification ; Exact sciences and technology ; Fluorescence Resonance Energy Transfer ; Fundamental and applied biological sciences. Psychology ; General, instrumentation ; Genetic Engineering ; glucose ; Glucose - analysis ; glucose indicator protein ; Indicators and Reagents ; Molecular Sequence Data ; Protein Binding ; Protein Conformation ; Recombinant Fusion Proteins - chemistry ; Recombinant Fusion Proteins - isolation &amp; purification ; Recombinant Proteins - chemistry ; Recombinant Proteins - isolation &amp; purification ; Spectrometric and optical methods</subject><ispartof>Analytical chemistry (Washington), 2003-07, Vol.75 (14), p.3451-3459</ispartof><rights>Copyright © 2003 American Chemical Society</rights><rights>2005 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a476t-c49db8463e195e6e1f4aa2737ac8d8b813b76bf8bcb04e7b1abec7df40ac58bb3</citedby><cites>FETCH-LOGICAL-a476t-c49db8463e195e6e1f4aa2737ac8d8b813b76bf8bcb04e7b1abec7df40ac58bb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/ac034022q$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/ac034022q$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>315,781,785,2766,27081,27929,27930,56743,56793</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=16166132$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/14570197$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ye, Kaiming</creatorcontrib><creatorcontrib>Schultz, Jerome S</creatorcontrib><title>Genetic Engineering of an Allosterically Based Glucose Indicator Protein for Continuous Glucose Monitoring by Fluorescence Resonance Energy Transfer</title><title>Analytical chemistry (Washington)</title><addtitle>Anal. Chem</addtitle><description>Real-time monitoring of blood glucose could vastly reduce a number of the long-term complications associated with diabetes. In this article, we present a novel approach that relies on a glucose-binding protein engineered such that a 20% reduction in fluorescence due to the fluorescence resonance energy transfer occurs as a result of glucose binding. This change in fluorescence provides a signal for the optical detection of glucose. The novel glucose indicator protein (GIP) was created by fusing two fluorescent reporter proteins (green fluorescent proteins) to each end of an Escherichia coli glucose-binding protein in such a manner that the spatial separation between the fluorescent moieties changes when glucose binds, thus generating a distinct optical signal that can be used for glucose detection. By placing the GIP within a dialysis hollow fiber sensor, a microsensor has been developed for continuous monitoring of glucose. The sensor had a response time to sudden glucose changes within 100 s and was reversible. The sensor was shown to have an optional range on the order of 10 μM of glucose.</description><subject>Amino Acid Sequence</subject><subject>Analytical biochemistry: general aspects, technics, instrumentation</subject><subject>Analytical chemistry</subject><subject>Analytical, structural and metabolic biochemistry</subject><subject>Biological and medical sciences</subject><subject>Biosensing Techniques</subject><subject>Chemistry</subject><subject>Electrophoresis, Polyacrylamide Gel</subject><subject>Escherichia coli</subject><subject>Escherichia coli - genetics</subject><subject>Escherichia coli - metabolism</subject><subject>Escherichia coli Proteins - chemistry</subject><subject>Escherichia coli Proteins - isolation &amp; purification</subject><subject>Exact sciences and technology</subject><subject>Fluorescence Resonance Energy Transfer</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>General, instrumentation</subject><subject>Genetic Engineering</subject><subject>glucose</subject><subject>Glucose - analysis</subject><subject>glucose indicator protein</subject><subject>Indicators and Reagents</subject><subject>Molecular Sequence Data</subject><subject>Protein Binding</subject><subject>Protein Conformation</subject><subject>Recombinant Fusion Proteins - chemistry</subject><subject>Recombinant Fusion Proteins - isolation &amp; purification</subject><subject>Recombinant Proteins - chemistry</subject><subject>Recombinant Proteins - isolation &amp; purification</subject><subject>Spectrometric and optical methods</subject><issn>0003-2700</issn><issn>1520-6882</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkcFuEzEQhi0EoqFw4AWQLyBxWLC9Xtt7bKM0VApQlXC2bO9s5LKxW3tXIu_BA-MoUXJB4jSj8ad_xv-P0FtKPlHC6GfjSM0JY0_P0Iw2jFRCKfYczQghdcUkIRfoVc4PhFBKqHiJLihvJKGtnKE_SwgweocXYeMDQPJhg2OPTcBXwxDzWCbODMMOX5sMHV4Ok4sZ8G3oynyMCd-lOIIPuC_9PIbRhylO-QR-jcEXbC9rd_hmmGKC7CA4wPeQYzD7bhEgbXZ4nUzIPaTX6EVvhgxvjvUS_bxZrOdfqtX35e38alUZLsVYOd52VnFRA20bEEB7bgyTtTROdcoqWlspbK-ss4SDtNRYcLLrOTGuUdbWl-jDQfcxxacJ8qi3vtw2DCZA-YOWlCnJZfNfkLaMtZKzAn48gC7FnBP0-jH5rUk7TYneZ6VPWRX23VF0slvozuQxnAK8PwImlwz64o7z-cwJKgSt90urA-dLXL9P7yb90qK40ej13Y9Cz1ffGF_p-7OucVk_xCmFYvI_DvwLAYi6Kg</recordid><startdate>20030715</startdate><enddate>20030715</enddate><creator>Ye, Kaiming</creator><creator>Schultz, Jerome S</creator><general>American Chemical Society</general><scope>BSCLL</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>20030715</creationdate><title>Genetic Engineering of an Allosterically Based Glucose Indicator Protein for Continuous Glucose Monitoring by Fluorescence Resonance Energy Transfer</title><author>Ye, Kaiming ; Schultz, Jerome S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a476t-c49db8463e195e6e1f4aa2737ac8d8b813b76bf8bcb04e7b1abec7df40ac58bb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Amino Acid Sequence</topic><topic>Analytical biochemistry: general aspects, technics, instrumentation</topic><topic>Analytical chemistry</topic><topic>Analytical, structural and metabolic biochemistry</topic><topic>Biological and medical sciences</topic><topic>Biosensing Techniques</topic><topic>Chemistry</topic><topic>Electrophoresis, Polyacrylamide Gel</topic><topic>Escherichia coli</topic><topic>Escherichia coli - genetics</topic><topic>Escherichia coli - metabolism</topic><topic>Escherichia coli Proteins - chemistry</topic><topic>Escherichia coli Proteins - isolation &amp; purification</topic><topic>Exact sciences and technology</topic><topic>Fluorescence Resonance Energy Transfer</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>General, instrumentation</topic><topic>Genetic Engineering</topic><topic>glucose</topic><topic>Glucose - analysis</topic><topic>glucose indicator protein</topic><topic>Indicators and Reagents</topic><topic>Molecular Sequence Data</topic><topic>Protein Binding</topic><topic>Protein Conformation</topic><topic>Recombinant Fusion Proteins - chemistry</topic><topic>Recombinant Fusion Proteins - isolation &amp; purification</topic><topic>Recombinant Proteins - chemistry</topic><topic>Recombinant Proteins - isolation &amp; purification</topic><topic>Spectrometric and optical methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ye, Kaiming</creatorcontrib><creatorcontrib>Schultz, Jerome S</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Analytical chemistry (Washington)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ye, Kaiming</au><au>Schultz, Jerome S</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Genetic Engineering of an Allosterically Based Glucose Indicator Protein for Continuous Glucose Monitoring by Fluorescence Resonance Energy Transfer</atitle><jtitle>Analytical chemistry (Washington)</jtitle><addtitle>Anal. Chem</addtitle><date>2003-07-15</date><risdate>2003</risdate><volume>75</volume><issue>14</issue><spage>3451</spage><epage>3459</epage><pages>3451-3459</pages><issn>0003-2700</issn><eissn>1520-6882</eissn><coden>ANCHAM</coden><abstract>Real-time monitoring of blood glucose could vastly reduce a number of the long-term complications associated with diabetes. In this article, we present a novel approach that relies on a glucose-binding protein engineered such that a 20% reduction in fluorescence due to the fluorescence resonance energy transfer occurs as a result of glucose binding. This change in fluorescence provides a signal for the optical detection of glucose. The novel glucose indicator protein (GIP) was created by fusing two fluorescent reporter proteins (green fluorescent proteins) to each end of an Escherichia coli glucose-binding protein in such a manner that the spatial separation between the fluorescent moieties changes when glucose binds, thus generating a distinct optical signal that can be used for glucose detection. By placing the GIP within a dialysis hollow fiber sensor, a microsensor has been developed for continuous monitoring of glucose. The sensor had a response time to sudden glucose changes within 100 s and was reversible. The sensor was shown to have an optional range on the order of 10 μM of glucose.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><pmid>14570197</pmid><doi>10.1021/ac034022q</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0003-2700
ispartof Analytical chemistry (Washington), 2003-07, Vol.75 (14), p.3451-3459
issn 0003-2700
1520-6882
language eng
recordid cdi_proquest_miscellaneous_71287475
source MEDLINE; ACS Publications
subjects Amino Acid Sequence
Analytical biochemistry: general aspects, technics, instrumentation
Analytical chemistry
Analytical, structural and metabolic biochemistry
Biological and medical sciences
Biosensing Techniques
Chemistry
Electrophoresis, Polyacrylamide Gel
Escherichia coli
Escherichia coli - genetics
Escherichia coli - metabolism
Escherichia coli Proteins - chemistry
Escherichia coli Proteins - isolation & purification
Exact sciences and technology
Fluorescence Resonance Energy Transfer
Fundamental and applied biological sciences. Psychology
General, instrumentation
Genetic Engineering
glucose
Glucose - analysis
glucose indicator protein
Indicators and Reagents
Molecular Sequence Data
Protein Binding
Protein Conformation
Recombinant Fusion Proteins - chemistry
Recombinant Fusion Proteins - isolation & purification
Recombinant Proteins - chemistry
Recombinant Proteins - isolation & purification
Spectrometric and optical methods
title Genetic Engineering of an Allosterically Based Glucose Indicator Protein for Continuous Glucose Monitoring by Fluorescence Resonance Energy Transfer
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-12T18%3A07%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Genetic%20Engineering%20of%20an%20Allosterically%20Based%20Glucose%20Indicator%20Protein%20for%20Continuous%20Glucose%20Monitoring%20by%20Fluorescence%20Resonance%20Energy%20Transfer&rft.jtitle=Analytical%20chemistry%20(Washington)&rft.au=Ye,%20Kaiming&rft.date=2003-07-15&rft.volume=75&rft.issue=14&rft.spage=3451&rft.epage=3459&rft.pages=3451-3459&rft.issn=0003-2700&rft.eissn=1520-6882&rft.coden=ANCHAM&rft_id=info:doi/10.1021/ac034022q&rft_dat=%3Cproquest_cross%3E19229742%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=19229742&rft_id=info:pmid/14570197&rfr_iscdi=true