Single-electron transistor of a single organic molecule with access to several redox states

A combination of classical Coulomb charging, electronic level spacings, spin, and vibrational modes determines the single-electron transfer reactions through nanoscale systems connected to external electrodes by tunnelling barriers 1 . Coulomb charging effects have been shown to dominate such transp...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature (London) 2003-10, Vol.425 (6959), p.698-701
Hauptverfasser: Kubatkin, Sergey, Danilov, Andrey, Hjort, Mattias, Cornil, Jérôme, Brédas, Jean-Luc, Stuhr-Hansen, Nicolai, Hedegård, Per, Bjørnholm, Thomas
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 701
container_issue 6959
container_start_page 698
container_title Nature (London)
container_volume 425
creator Kubatkin, Sergey
Danilov, Andrey
Hjort, Mattias
Cornil, Jérôme
Brédas, Jean-Luc
Stuhr-Hansen, Nicolai
Hedegård, Per
Bjørnholm, Thomas
description A combination of classical Coulomb charging, electronic level spacings, spin, and vibrational modes determines the single-electron transfer reactions through nanoscale systems connected to external electrodes by tunnelling barriers 1 . Coulomb charging effects have been shown to dominate such transport in semiconductor quantum dots 2 , metallic 3 and semiconducting 4 nanoparticles, carbon nanotubes 5 , 6 , and single molecules 7 , 8 , 9 . Recently, transport has been shown to be also influenced by spin—through the Kondo effect—for both nanotubes 10 and single molecules 8 , 9 , as well as by vibrational fine structure 7 , 11 . Here we describe a single-electron transistor where the electronic levels of a single π-conjugated molecule in several distinct charged states control the transport properties. The molecular electronic levels extracted from the single-electron-transistor measurements are strongly perturbed compared to those of the molecule in solution, leading to a very significant reduction of the gap between the highest occupied molecular orbital and the lowest unoccupied molecular orbital. We suggest, and verify by simple model calculations, that this surprising effect could be caused by image charges generated in the source and drain electrodes resulting in a strong localization of the charges on the molecule.
doi_str_mv 10.1038/nature02010
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_71286532</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A187805742</galeid><sourcerecordid>A187805742</sourcerecordid><originalsourceid>FETCH-LOGICAL-c548t-bf7e48bf36bfea406026b6aa5a4c37017695652ee08cb4f03104888b817e38f23</originalsourceid><addsrcrecordid>eNqF0s9rFDEUB_BBFLtWT94lCBVEp75k8muPpfijUBCsnjwMmezLmDIz2SYZrf-9qbuwXVmQHAJ5n7yQx7eqnlM4pdDod5PJc0RgQOFBtaBcyZpLrR5WCwCma9CNPKqepHQNAIIq_rg6olxIBku9qL5f-akfsMYBbY5hIjmaKfmUQyTBEUPS3zoJsTeTt2QMBc7l4JfPP4ixFlMiOZCEPzGagURchVuSssmYnlaPnBkSPtvux9W3D--_nn-qLz9_vDg_u6yt4DrXnVPIdeca2Tk0HCQw2UljhOG2UUCVXAopGCJo23EHDQWute40Vdhox5rj6tWm7zqGmxlTbkefLA6DmTDMqVWUaSma_0OmlkoK4AW-_AdehzlO5RMtAy6o5ktRUL1BvRmw9ZMLZXa2x-luEGFC58vxGdVKg1Cc7Zruebv2N-19dHoAlbXC0duDXV_vXSgm423uzZxSe3H1Zd--2VgbQ0oRXbuOfjTxd0uhvctSey9LRb_YDmHuRlzt7DY8BZxsgUnWDK4kx_q0c4JREECLe7txqZSmHuNumofe_QM7r930</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>204518495</pqid></control><display><type>article</type><title>Single-electron transistor of a single organic molecule with access to several redox states</title><source>Nature Journals Online</source><source>SpringerLink Journals - AutoHoldings</source><creator>Kubatkin, Sergey ; Danilov, Andrey ; Hjort, Mattias ; Cornil, Jérôme ; Brédas, Jean-Luc ; Stuhr-Hansen, Nicolai ; Hedegård, Per ; Bjørnholm, Thomas</creator><creatorcontrib>Kubatkin, Sergey ; Danilov, Andrey ; Hjort, Mattias ; Cornil, Jérôme ; Brédas, Jean-Luc ; Stuhr-Hansen, Nicolai ; Hedegård, Per ; Bjørnholm, Thomas</creatorcontrib><description>A combination of classical Coulomb charging, electronic level spacings, spin, and vibrational modes determines the single-electron transfer reactions through nanoscale systems connected to external electrodes by tunnelling barriers 1 . Coulomb charging effects have been shown to dominate such transport in semiconductor quantum dots 2 , metallic 3 and semiconducting 4 nanoparticles, carbon nanotubes 5 , 6 , and single molecules 7 , 8 , 9 . Recently, transport has been shown to be also influenced by spin—through the Kondo effect—for both nanotubes 10 and single molecules 8 , 9 , as well as by vibrational fine structure 7 , 11 . Here we describe a single-electron transistor where the electronic levels of a single π-conjugated molecule in several distinct charged states control the transport properties. The molecular electronic levels extracted from the single-electron-transistor measurements are strongly perturbed compared to those of the molecule in solution, leading to a very significant reduction of the gap between the highest occupied molecular orbital and the lowest unoccupied molecular orbital. We suggest, and verify by simple model calculations, that this surprising effect could be caused by image charges generated in the source and drain electrodes resulting in a strong localization of the charges on the molecule.</description><identifier>ISSN: 0028-0836</identifier><identifier>EISSN: 1476-4687</identifier><identifier>DOI: 10.1038/nature02010</identifier><identifier>PMID: 14562098</identifier><identifier>CODEN: NATUAS</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>Applied sciences ; Electrodes ; Electronics ; Electrons ; Exact sciences and technology ; Humanities and Social Sciences ; letter ; Molecular electronics, nanoelectronics ; Molecules ; multidisciplinary ; Nanotechnology ; Science ; Science (multidisciplinary) ; Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices ; Transistors</subject><ispartof>Nature (London), 2003-10, Vol.425 (6959), p.698-701</ispartof><rights>Macmillan Magazines Ltd. 2003</rights><rights>2004 INIST-CNRS</rights><rights>COPYRIGHT 2003 Nature Publishing Group</rights><rights>Copyright Macmillan Journals Ltd. Oct 16, 2003</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c548t-bf7e48bf36bfea406026b6aa5a4c37017695652ee08cb4f03104888b817e38f23</citedby><cites>FETCH-LOGICAL-c548t-bf7e48bf36bfea406026b6aa5a4c37017695652ee08cb4f03104888b817e38f23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/nature02010$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/nature02010$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=15210501$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/14562098$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kubatkin, Sergey</creatorcontrib><creatorcontrib>Danilov, Andrey</creatorcontrib><creatorcontrib>Hjort, Mattias</creatorcontrib><creatorcontrib>Cornil, Jérôme</creatorcontrib><creatorcontrib>Brédas, Jean-Luc</creatorcontrib><creatorcontrib>Stuhr-Hansen, Nicolai</creatorcontrib><creatorcontrib>Hedegård, Per</creatorcontrib><creatorcontrib>Bjørnholm, Thomas</creatorcontrib><title>Single-electron transistor of a single organic molecule with access to several redox states</title><title>Nature (London)</title><addtitle>Nature</addtitle><addtitle>Nature</addtitle><description>A combination of classical Coulomb charging, electronic level spacings, spin, and vibrational modes determines the single-electron transfer reactions through nanoscale systems connected to external electrodes by tunnelling barriers 1 . Coulomb charging effects have been shown to dominate such transport in semiconductor quantum dots 2 , metallic 3 and semiconducting 4 nanoparticles, carbon nanotubes 5 , 6 , and single molecules 7 , 8 , 9 . Recently, transport has been shown to be also influenced by spin—through the Kondo effect—for both nanotubes 10 and single molecules 8 , 9 , as well as by vibrational fine structure 7 , 11 . Here we describe a single-electron transistor where the electronic levels of a single π-conjugated molecule in several distinct charged states control the transport properties. The molecular electronic levels extracted from the single-electron-transistor measurements are strongly perturbed compared to those of the molecule in solution, leading to a very significant reduction of the gap between the highest occupied molecular orbital and the lowest unoccupied molecular orbital. We suggest, and verify by simple model calculations, that this surprising effect could be caused by image charges generated in the source and drain electrodes resulting in a strong localization of the charges on the molecule.</description><subject>Applied sciences</subject><subject>Electrodes</subject><subject>Electronics</subject><subject>Electrons</subject><subject>Exact sciences and technology</subject><subject>Humanities and Social Sciences</subject><subject>letter</subject><subject>Molecular electronics, nanoelectronics</subject><subject>Molecules</subject><subject>multidisciplinary</subject><subject>Nanotechnology</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</subject><subject>Transistors</subject><issn>0028-0836</issn><issn>1476-4687</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqF0s9rFDEUB_BBFLtWT94lCBVEp75k8muPpfijUBCsnjwMmezLmDIz2SYZrf-9qbuwXVmQHAJ5n7yQx7eqnlM4pdDod5PJc0RgQOFBtaBcyZpLrR5WCwCma9CNPKqepHQNAIIq_rg6olxIBku9qL5f-akfsMYBbY5hIjmaKfmUQyTBEUPS3zoJsTeTt2QMBc7l4JfPP4ixFlMiOZCEPzGagURchVuSssmYnlaPnBkSPtvux9W3D--_nn-qLz9_vDg_u6yt4DrXnVPIdeca2Tk0HCQw2UljhOG2UUCVXAopGCJo23EHDQWute40Vdhox5rj6tWm7zqGmxlTbkefLA6DmTDMqVWUaSma_0OmlkoK4AW-_AdehzlO5RMtAy6o5ktRUL1BvRmw9ZMLZXa2x-luEGFC58vxGdVKg1Cc7Zruebv2N-19dHoAlbXC0duDXV_vXSgm423uzZxSe3H1Zd--2VgbQ0oRXbuOfjTxd0uhvctSey9LRb_YDmHuRlzt7DY8BZxsgUnWDK4kx_q0c4JREECLe7txqZSmHuNumofe_QM7r930</recordid><startdate>20031016</startdate><enddate>20031016</enddate><creator>Kubatkin, Sergey</creator><creator>Danilov, Andrey</creator><creator>Hjort, Mattias</creator><creator>Cornil, Jérôme</creator><creator>Brédas, Jean-Luc</creator><creator>Stuhr-Hansen, Nicolai</creator><creator>Hedegård, Per</creator><creator>Bjørnholm, Thomas</creator><general>Nature Publishing Group UK</general><general>Nature Publishing</general><general>Nature Publishing Group</general><scope>IQODW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7TG</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88G</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PSYQQ</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>R05</scope><scope>RC3</scope><scope>S0X</scope><scope>SOI</scope><scope>7SP</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope></search><sort><creationdate>20031016</creationdate><title>Single-electron transistor of a single organic molecule with access to several redox states</title><author>Kubatkin, Sergey ; Danilov, Andrey ; Hjort, Mattias ; Cornil, Jérôme ; Brédas, Jean-Luc ; Stuhr-Hansen, Nicolai ; Hedegård, Per ; Bjørnholm, Thomas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c548t-bf7e48bf36bfea406026b6aa5a4c37017695652ee08cb4f03104888b817e38f23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Applied sciences</topic><topic>Electrodes</topic><topic>Electronics</topic><topic>Electrons</topic><topic>Exact sciences and technology</topic><topic>Humanities and Social Sciences</topic><topic>letter</topic><topic>Molecular electronics, nanoelectronics</topic><topic>Molecules</topic><topic>multidisciplinary</topic><topic>Nanotechnology</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</topic><topic>Transistors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kubatkin, Sergey</creatorcontrib><creatorcontrib>Danilov, Andrey</creatorcontrib><creatorcontrib>Hjort, Mattias</creatorcontrib><creatorcontrib>Cornil, Jérôme</creatorcontrib><creatorcontrib>Brédas, Jean-Luc</creatorcontrib><creatorcontrib>Stuhr-Hansen, Nicolai</creatorcontrib><creatorcontrib>Hedegård, Per</creatorcontrib><creatorcontrib>Bjørnholm, Thomas</creatorcontrib><collection>Pascal-Francis</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Psychology Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest One Psychology</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>University of Michigan</collection><collection>Genetics Abstracts</collection><collection>SIRS Editorial</collection><collection>Environment Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Nature (London)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kubatkin, Sergey</au><au>Danilov, Andrey</au><au>Hjort, Mattias</au><au>Cornil, Jérôme</au><au>Brédas, Jean-Luc</au><au>Stuhr-Hansen, Nicolai</au><au>Hedegård, Per</au><au>Bjørnholm, Thomas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Single-electron transistor of a single organic molecule with access to several redox states</atitle><jtitle>Nature (London)</jtitle><stitle>Nature</stitle><addtitle>Nature</addtitle><date>2003-10-16</date><risdate>2003</risdate><volume>425</volume><issue>6959</issue><spage>698</spage><epage>701</epage><pages>698-701</pages><issn>0028-0836</issn><eissn>1476-4687</eissn><coden>NATUAS</coden><abstract>A combination of classical Coulomb charging, electronic level spacings, spin, and vibrational modes determines the single-electron transfer reactions through nanoscale systems connected to external electrodes by tunnelling barriers 1 . Coulomb charging effects have been shown to dominate such transport in semiconductor quantum dots 2 , metallic 3 and semiconducting 4 nanoparticles, carbon nanotubes 5 , 6 , and single molecules 7 , 8 , 9 . Recently, transport has been shown to be also influenced by spin—through the Kondo effect—for both nanotubes 10 and single molecules 8 , 9 , as well as by vibrational fine structure 7 , 11 . Here we describe a single-electron transistor where the electronic levels of a single π-conjugated molecule in several distinct charged states control the transport properties. The molecular electronic levels extracted from the single-electron-transistor measurements are strongly perturbed compared to those of the molecule in solution, leading to a very significant reduction of the gap between the highest occupied molecular orbital and the lowest unoccupied molecular orbital. We suggest, and verify by simple model calculations, that this surprising effect could be caused by image charges generated in the source and drain electrodes resulting in a strong localization of the charges on the molecule.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>14562098</pmid><doi>10.1038/nature02010</doi><tpages>4</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0028-0836
ispartof Nature (London), 2003-10, Vol.425 (6959), p.698-701
issn 0028-0836
1476-4687
language eng
recordid cdi_proquest_miscellaneous_71286532
source Nature Journals Online; SpringerLink Journals - AutoHoldings
subjects Applied sciences
Electrodes
Electronics
Electrons
Exact sciences and technology
Humanities and Social Sciences
letter
Molecular electronics, nanoelectronics
Molecules
multidisciplinary
Nanotechnology
Science
Science (multidisciplinary)
Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices
Transistors
title Single-electron transistor of a single organic molecule with access to several redox states
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T13%3A07%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Single-electron%20transistor%20of%20a%20single%20organic%20molecule%20with%20access%20to%20several%20redox%20states&rft.jtitle=Nature%20(London)&rft.au=Kubatkin,%20Sergey&rft.date=2003-10-16&rft.volume=425&rft.issue=6959&rft.spage=698&rft.epage=701&rft.pages=698-701&rft.issn=0028-0836&rft.eissn=1476-4687&rft.coden=NATUAS&rft_id=info:doi/10.1038/nature02010&rft_dat=%3Cgale_proqu%3EA187805742%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=204518495&rft_id=info:pmid/14562098&rft_galeid=A187805742&rfr_iscdi=true