How to build an adapted and bioactive cell microenvironment? A chemical interaction study of the structure of Ca-alginate matrices and their repercussion on confined cells
Alginates are increasingly being used as medical materials (matrices for tissue regeneration, surgical sponges, hemostatic bandages, microbial and cell encapsulation, artificial bacterial biofilms, etc.). The constitution of alginate gel networks is a complex phenomenon. A great number of different...
Gespeichert in:
Veröffentlicht in: | Journal of biomedical materials research 2003-11, Vol.67A (2), p.376-388 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 388 |
---|---|
container_issue | 2 |
container_start_page | 376 |
container_title | Journal of biomedical materials research |
container_volume | 67A |
creator | Bienaimé, Christophe Barbotin, Jean-Noël Nava-Saucedo, José-Edmundo |
description | Alginates are increasingly being used as medical materials (matrices for tissue regeneration, surgical sponges, hemostatic bandages, microbial and cell encapsulation, artificial bacterial biofilms, etc.). The constitution of alginate gel networks is a complex phenomenon. A great number of different kinds of polysaccharidic frameworks can come to existence depending on the conditions used for their attainment. For instance, the degree of heterogeneity and porosity of Ca‐alginate beads rely on this molecular organization. The formation of structural irregularities (superficial crust, cavities, shafts, dense or light gel frameworks, ordered or chaotic domains, etc.) within the alginate gel beads are inherent to this skeletal design. Several specific staining molecules (e.g. calcon carboxylic acid, murexide, methylene blue) that are negatively or positively charged interact with the gel network. These molecules allowed us to reveal a great variety of chemical interactions shown by the pattern coloration of the internal structure of the gel. The results observed are very different for the several matrices analyzed, which could explain to a great extent the singular behavior that cells confined in these kind of matrices exhibit. © 2003 Wiley Periodicals, Inc. J Biomed Mater Res 67A: 376–388, 2003 |
doi_str_mv | 10.1002/jbm.a.10487 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_71282254</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>19181621</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4267-983e540d691cd1c093095a18dec3865a53ae901157e3f5a9a0a96a50d924bcd03</originalsourceid><addsrcrecordid>eNqFkcFu1DAQhiMEoqVw4o58gQtKsZ3YiU-o3dJuqwUuoHKzJs6EuiTO1nZa9pl4SZzuQm8gWfLM6Jv5R_Nn2UtGDxml_N11MxxCCsu6epTtMyF4XiopHs9xqfKCK7mXPQvhOsGSCv4022OlkLKq6v3s13K8I3EkzWT7loAj0MI64hy2pLEjmGhvkRjsezJY40d0t9aPbkAX35MjYq4wlaEn1kX0Mz06EuLUbsjYkXiFKfGTiZPHubCAHPrv1kFEMkD01mC4l0qk9cTjGr2ZQpinpGdG11mXtpn1w_PsSQd9wBe7_yD7evrhy2KZrz6fnS-OVrkpuaxyVRcoStpKxUzLDFUFVQJY3aIpailAFICKMiYqLDoBCigoCYK2ipeNaWlxkL3Zzl378WbCEPVgw7wBOBynoCvGa85F-V-QKVYzyVkC327BdMAQPHZ67e0AfqMZ1bOJOpmoQd-bmOhXu7FTM2D7wO5cS8DrHQAh3b7z4IwND5zgpVSFSBzbcne2x82_NPXF8cc_4vm2x4aIP__2gP-hZVVUQl9-OtOX6vTkeHWy1N-K33Vxxlg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>19181621</pqid></control><display><type>article</type><title>How to build an adapted and bioactive cell microenvironment? A chemical interaction study of the structure of Ca-alginate matrices and their repercussion on confined cells</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Bienaimé, Christophe ; Barbotin, Jean-Noël ; Nava-Saucedo, José-Edmundo</creator><creatorcontrib>Bienaimé, Christophe ; Barbotin, Jean-Noël ; Nava-Saucedo, José-Edmundo</creatorcontrib><description>Alginates are increasingly being used as medical materials (matrices for tissue regeneration, surgical sponges, hemostatic bandages, microbial and cell encapsulation, artificial bacterial biofilms, etc.). The constitution of alginate gel networks is a complex phenomenon. A great number of different kinds of polysaccharidic frameworks can come to existence depending on the conditions used for their attainment. For instance, the degree of heterogeneity and porosity of Ca‐alginate beads rely on this molecular organization. The formation of structural irregularities (superficial crust, cavities, shafts, dense or light gel frameworks, ordered or chaotic domains, etc.) within the alginate gel beads are inherent to this skeletal design. Several specific staining molecules (e.g. calcon carboxylic acid, murexide, methylene blue) that are negatively or positively charged interact with the gel network. These molecules allowed us to reveal a great variety of chemical interactions shown by the pattern coloration of the internal structure of the gel. The results observed are very different for the several matrices analyzed, which could explain to a great extent the singular behavior that cells confined in these kind of matrices exhibit. © 2003 Wiley Periodicals, Inc. J Biomed Mater Res 67A: 376–388, 2003</description><identifier>ISSN: 1549-3296</identifier><identifier>ISSN: 0021-9304</identifier><identifier>EISSN: 1552-4965</identifier><identifier>EISSN: 1097-4636</identifier><identifier>DOI: 10.1002/jbm.a.10487</identifier><identifier>PMID: 14566778</identifier><identifier>CODEN: JBMRBG</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>alginate ; Alginates - chemistry ; artificial biofilms ; Biocompatible Materials - chemical synthesis ; Biocompatible Materials - chemistry ; Biological and medical sciences ; Ca-alginate gel beads ; Calcium - chemistry ; calcium alginate ; calcon carboxylic acid ; cellular confinement ; Macrocystis - chemistry ; Medical sciences ; methylene blue ; Microspheres ; murexide ; polysaccharides ; Radiotherapy. Instrumental treatment. Physiotherapy. Reeducation. Rehabilitation, orthophony, crenotherapy. Diet therapy and various other treatments (general aspects) ; Staining and Labeling ; staining molecules ; Technology. Biomaterials. Equipments. Material. Instrumentation</subject><ispartof>Journal of biomedical materials research, 2003-11, Vol.67A (2), p.376-388</ispartof><rights>Copyright © 2003 Wiley Periodicals, Inc.</rights><rights>2004 INIST-CNRS</rights><rights>Copyright 2003 Wiley Periodicals, Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4267-983e540d691cd1c093095a18dec3865a53ae901157e3f5a9a0a96a50d924bcd03</citedby><cites>FETCH-LOGICAL-c4267-983e540d691cd1c093095a18dec3865a53ae901157e3f5a9a0a96a50d924bcd03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fjbm.a.10487$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fjbm.a.10487$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=15246935$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/14566778$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bienaimé, Christophe</creatorcontrib><creatorcontrib>Barbotin, Jean-Noël</creatorcontrib><creatorcontrib>Nava-Saucedo, José-Edmundo</creatorcontrib><title>How to build an adapted and bioactive cell microenvironment? A chemical interaction study of the structure of Ca-alginate matrices and their repercussion on confined cells</title><title>Journal of biomedical materials research</title><addtitle>J. Biomed. Mater. Res</addtitle><description>Alginates are increasingly being used as medical materials (matrices for tissue regeneration, surgical sponges, hemostatic bandages, microbial and cell encapsulation, artificial bacterial biofilms, etc.). The constitution of alginate gel networks is a complex phenomenon. A great number of different kinds of polysaccharidic frameworks can come to existence depending on the conditions used for their attainment. For instance, the degree of heterogeneity and porosity of Ca‐alginate beads rely on this molecular organization. The formation of structural irregularities (superficial crust, cavities, shafts, dense or light gel frameworks, ordered or chaotic domains, etc.) within the alginate gel beads are inherent to this skeletal design. Several specific staining molecules (e.g. calcon carboxylic acid, murexide, methylene blue) that are negatively or positively charged interact with the gel network. These molecules allowed us to reveal a great variety of chemical interactions shown by the pattern coloration of the internal structure of the gel. The results observed are very different for the several matrices analyzed, which could explain to a great extent the singular behavior that cells confined in these kind of matrices exhibit. © 2003 Wiley Periodicals, Inc. J Biomed Mater Res 67A: 376–388, 2003</description><subject>alginate</subject><subject>Alginates - chemistry</subject><subject>artificial biofilms</subject><subject>Biocompatible Materials - chemical synthesis</subject><subject>Biocompatible Materials - chemistry</subject><subject>Biological and medical sciences</subject><subject>Ca-alginate gel beads</subject><subject>Calcium - chemistry</subject><subject>calcium alginate</subject><subject>calcon carboxylic acid</subject><subject>cellular confinement</subject><subject>Macrocystis - chemistry</subject><subject>Medical sciences</subject><subject>methylene blue</subject><subject>Microspheres</subject><subject>murexide</subject><subject>polysaccharides</subject><subject>Radiotherapy. Instrumental treatment. Physiotherapy. Reeducation. Rehabilitation, orthophony, crenotherapy. Diet therapy and various other treatments (general aspects)</subject><subject>Staining and Labeling</subject><subject>staining molecules</subject><subject>Technology. Biomaterials. Equipments. Material. Instrumentation</subject><issn>1549-3296</issn><issn>0021-9304</issn><issn>1552-4965</issn><issn>1097-4636</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkcFu1DAQhiMEoqVw4o58gQtKsZ3YiU-o3dJuqwUuoHKzJs6EuiTO1nZa9pl4SZzuQm8gWfLM6Jv5R_Nn2UtGDxml_N11MxxCCsu6epTtMyF4XiopHs9xqfKCK7mXPQvhOsGSCv4022OlkLKq6v3s13K8I3EkzWT7loAj0MI64hy2pLEjmGhvkRjsezJY40d0t9aPbkAX35MjYq4wlaEn1kX0Mz06EuLUbsjYkXiFKfGTiZPHubCAHPrv1kFEMkD01mC4l0qk9cTjGr2ZQpinpGdG11mXtpn1w_PsSQd9wBe7_yD7evrhy2KZrz6fnS-OVrkpuaxyVRcoStpKxUzLDFUFVQJY3aIpailAFICKMiYqLDoBCigoCYK2ipeNaWlxkL3Zzl378WbCEPVgw7wBOBynoCvGa85F-V-QKVYzyVkC327BdMAQPHZ67e0AfqMZ1bOJOpmoQd-bmOhXu7FTM2D7wO5cS8DrHQAh3b7z4IwND5zgpVSFSBzbcne2x82_NPXF8cc_4vm2x4aIP__2gP-hZVVUQl9-OtOX6vTkeHWy1N-K33Vxxlg</recordid><startdate>20031101</startdate><enddate>20031101</enddate><creator>Bienaimé, Christophe</creator><creator>Barbotin, Jean-Noël</creator><creator>Nava-Saucedo, José-Edmundo</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><general>John Wiley & Sons</general><scope>BSCLL</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>20031101</creationdate><title>How to build an adapted and bioactive cell microenvironment? A chemical interaction study of the structure of Ca-alginate matrices and their repercussion on confined cells</title><author>Bienaimé, Christophe ; Barbotin, Jean-Noël ; Nava-Saucedo, José-Edmundo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4267-983e540d691cd1c093095a18dec3865a53ae901157e3f5a9a0a96a50d924bcd03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>alginate</topic><topic>Alginates - chemistry</topic><topic>artificial biofilms</topic><topic>Biocompatible Materials - chemical synthesis</topic><topic>Biocompatible Materials - chemistry</topic><topic>Biological and medical sciences</topic><topic>Ca-alginate gel beads</topic><topic>Calcium - chemistry</topic><topic>calcium alginate</topic><topic>calcon carboxylic acid</topic><topic>cellular confinement</topic><topic>Macrocystis - chemistry</topic><topic>Medical sciences</topic><topic>methylene blue</topic><topic>Microspheres</topic><topic>murexide</topic><topic>polysaccharides</topic><topic>Radiotherapy. Instrumental treatment. Physiotherapy. Reeducation. Rehabilitation, orthophony, crenotherapy. Diet therapy and various other treatments (general aspects)</topic><topic>Staining and Labeling</topic><topic>staining molecules</topic><topic>Technology. Biomaterials. Equipments. Material. Instrumentation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bienaimé, Christophe</creatorcontrib><creatorcontrib>Barbotin, Jean-Noël</creatorcontrib><creatorcontrib>Nava-Saucedo, José-Edmundo</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of biomedical materials research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bienaimé, Christophe</au><au>Barbotin, Jean-Noël</au><au>Nava-Saucedo, José-Edmundo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>How to build an adapted and bioactive cell microenvironment? A chemical interaction study of the structure of Ca-alginate matrices and their repercussion on confined cells</atitle><jtitle>Journal of biomedical materials research</jtitle><addtitle>J. Biomed. Mater. Res</addtitle><date>2003-11-01</date><risdate>2003</risdate><volume>67A</volume><issue>2</issue><spage>376</spage><epage>388</epage><pages>376-388</pages><issn>1549-3296</issn><issn>0021-9304</issn><eissn>1552-4965</eissn><eissn>1097-4636</eissn><coden>JBMRBG</coden><abstract>Alginates are increasingly being used as medical materials (matrices for tissue regeneration, surgical sponges, hemostatic bandages, microbial and cell encapsulation, artificial bacterial biofilms, etc.). The constitution of alginate gel networks is a complex phenomenon. A great number of different kinds of polysaccharidic frameworks can come to existence depending on the conditions used for their attainment. For instance, the degree of heterogeneity and porosity of Ca‐alginate beads rely on this molecular organization. The formation of structural irregularities (superficial crust, cavities, shafts, dense or light gel frameworks, ordered or chaotic domains, etc.) within the alginate gel beads are inherent to this skeletal design. Several specific staining molecules (e.g. calcon carboxylic acid, murexide, methylene blue) that are negatively or positively charged interact with the gel network. These molecules allowed us to reveal a great variety of chemical interactions shown by the pattern coloration of the internal structure of the gel. The results observed are very different for the several matrices analyzed, which could explain to a great extent the singular behavior that cells confined in these kind of matrices exhibit. © 2003 Wiley Periodicals, Inc. J Biomed Mater Res 67A: 376–388, 2003</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><pmid>14566778</pmid><doi>10.1002/jbm.a.10487</doi><tpages>13</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1549-3296 |
ispartof | Journal of biomedical materials research, 2003-11, Vol.67A (2), p.376-388 |
issn | 1549-3296 0021-9304 1552-4965 1097-4636 |
language | eng |
recordid | cdi_proquest_miscellaneous_71282254 |
source | MEDLINE; Wiley Online Library Journals Frontfile Complete |
subjects | alginate Alginates - chemistry artificial biofilms Biocompatible Materials - chemical synthesis Biocompatible Materials - chemistry Biological and medical sciences Ca-alginate gel beads Calcium - chemistry calcium alginate calcon carboxylic acid cellular confinement Macrocystis - chemistry Medical sciences methylene blue Microspheres murexide polysaccharides Radiotherapy. Instrumental treatment. Physiotherapy. Reeducation. Rehabilitation, orthophony, crenotherapy. Diet therapy and various other treatments (general aspects) Staining and Labeling staining molecules Technology. Biomaterials. Equipments. Material. Instrumentation |
title | How to build an adapted and bioactive cell microenvironment? A chemical interaction study of the structure of Ca-alginate matrices and their repercussion on confined cells |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T23%3A32%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=How%20to%20build%20an%20adapted%20and%20bioactive%20cell%20microenvironment?%20A%20chemical%20interaction%20study%20of%20the%20structure%20of%20Ca-alginate%20matrices%20and%20their%20repercussion%20on%20confined%20cells&rft.jtitle=Journal%20of%20biomedical%20materials%20research&rft.au=Bienaim%C3%A9,%20Christophe&rft.date=2003-11-01&rft.volume=67A&rft.issue=2&rft.spage=376&rft.epage=388&rft.pages=376-388&rft.issn=1549-3296&rft.eissn=1552-4965&rft.coden=JBMRBG&rft_id=info:doi/10.1002/jbm.a.10487&rft_dat=%3Cproquest_cross%3E19181621%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=19181621&rft_id=info:pmid/14566778&rfr_iscdi=true |