Raft ceramide in molecular medicine

Ceramide, generated by the action of acid sphingomyelinase (ASM), has emerged as a biochemical mediator of stimuli as diverse as ionizing radiation, chemotherapy, UVA light, heat, CD95, reperfusion injury, as well as infection with some pathogenic bacteria and viruses. ASM activity is also crucial f...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Oncogene 2003-10, Vol.22 (45), p.7070-7077
Hauptverfasser: Gulbins, Erich, Kolesnick, Richard
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 7077
container_issue 45
container_start_page 7070
container_title Oncogene
container_volume 22
creator Gulbins, Erich
Kolesnick, Richard
description Ceramide, generated by the action of acid sphingomyelinase (ASM), has emerged as a biochemical mediator of stimuli as diverse as ionizing radiation, chemotherapy, UVA light, heat, CD95, reperfusion injury, as well as infection with some pathogenic bacteria and viruses. ASM activity is also crucial for developmental programmed cell death of oocytes by apoptosis. Recently, we proposed a comprehensive model that might explain these diverse functions of ceramide: Upon contacting the relevant stimuli, ASM translocates into and generates ceramide within distinct plasma membrane sphingolipid-enriched microdomains termed rafts. Ceramide, which manifests a unique biophysical property, the capability to self-associate through hydrogen bonding, provides the driving force that results in the coalescence of microscopic rafts into large-membrane macrodomains. These structures serve as platforms for protein concentration and oligomerization, transmitting signals across the plasma membrane. Preliminary data suggest that manipulation of ceramide metabolism and/or the function of ceramide-enriched membrane platforms may present novel therapeutic opportunities for the treatment of cancer, degenerative disorders, pathogenic infections or cardiovascular diseases.
doi_str_mv 10.1038/sj.onc.1207146
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_71278462</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A189167999</galeid><sourcerecordid>A189167999</sourcerecordid><originalsourceid>FETCH-LOGICAL-c546t-5f7d2163b1b212004aed0f25adda0094f34ea407c3da0782f096e0c5e83d555a3</originalsourceid><addsrcrecordid>eNqFkUlrHDEQhUWIsSeOr7klDDHk1uMqLa3W0RhnAYMhJGehUZeMhl4cqfvgfx8N0zAm2AQdhFRfPb3SY-wDwgZBNFd5txkHv0EOGmX9hq1Q6rpSysi3bAVGQWW44GfsXc47ANAG-Ck7Q6mUbpCv2OVPF6a1p-T62NI6Dut-7MjPnUvrntro40Dv2UlwXaaLZT9nv7_e_rr5Xt3df_txc31XeSXrqVJBtxxrscUtL35AOmohcOXa1gEYGYQkJ0F7Uc664QFMTeAVNaJVSjlxzr4cdB_T-GemPNk-Zk9d5wYa52w1ct3Imv8XRFN8IGABL_8Bd-OchjKE5bVEIbBRe-rzqxTXQpbfeib14DqycQjjlJzfv2uvsTFYa2NMoTYvUGW11Ec_DhRiuX-pwacx50TBPqbYu_RkEew-YZt3tiRsl4RLw6fF7LwtAR3xJdICXB2AXErDA6XjNK9Kfjx0DG6aEx0ll_pfOgO2Mw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>227341451</pqid></control><display><type>article</type><title>Raft ceramide in molecular medicine</title><source>MEDLINE</source><source>Nature</source><source>EZB-FREE-00999 freely available EZB journals</source><source>SpringerLink Journals - AutoHoldings</source><creator>Gulbins, Erich ; Kolesnick, Richard</creator><creatorcontrib>Gulbins, Erich ; Kolesnick, Richard</creatorcontrib><description>Ceramide, generated by the action of acid sphingomyelinase (ASM), has emerged as a biochemical mediator of stimuli as diverse as ionizing radiation, chemotherapy, UVA light, heat, CD95, reperfusion injury, as well as infection with some pathogenic bacteria and viruses. ASM activity is also crucial for developmental programmed cell death of oocytes by apoptosis. Recently, we proposed a comprehensive model that might explain these diverse functions of ceramide: Upon contacting the relevant stimuli, ASM translocates into and generates ceramide within distinct plasma membrane sphingolipid-enriched microdomains termed rafts. Ceramide, which manifests a unique biophysical property, the capability to self-associate through hydrogen bonding, provides the driving force that results in the coalescence of microscopic rafts into large-membrane macrodomains. These structures serve as platforms for protein concentration and oligomerization, transmitting signals across the plasma membrane. Preliminary data suggest that manipulation of ceramide metabolism and/or the function of ceramide-enriched membrane platforms may present novel therapeutic opportunities for the treatment of cancer, degenerative disorders, pathogenic infections or cardiovascular diseases.</description><identifier>ISSN: 0950-9232</identifier><identifier>EISSN: 1476-5594</identifier><identifier>DOI: 10.1038/sj.onc.1207146</identifier><identifier>PMID: 14557812</identifier><identifier>CODEN: ONCNES</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>Acids ; Animals ; Apoptosis ; Apoptosis - radiation effects ; Autoimmune Diseases - metabolism ; Bacteria ; Cardiovascular diseases ; CD95 antigen ; Cell Biology ; Cell death ; Ceramide ; Ceramides - physiology ; Chemotherapy ; Disease ; Drug Therapy ; Human Genetics ; Humans ; Hydrogen bonding ; Internal Medicine ; Ionizing radiation ; Lipid rafts ; Medicine ; Medicine &amp; Public Health ; Membrane Microdomains - physiology ; Nervous system ; Oligomerization ; Oncology ; Oocytes ; Pathogenesis ; Plasma ; Preventive Medicine ; Radiation ; Reperfusion ; review ; Signal transduction ; Sphingomyelin phosphodiesterase ; Sphingomyelin Phosphodiesterase - metabolism</subject><ispartof>Oncogene, 2003-10, Vol.22 (45), p.7070-7077</ispartof><rights>Springer Nature Limited 2003</rights><rights>COPYRIGHT 2003 Nature Publishing Group</rights><rights>Copyright Nature Publishing Group Oct 13, 2003</rights><rights>Nature Publishing Group 2003.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c546t-5f7d2163b1b212004aed0f25adda0094f34ea407c3da0782f096e0c5e83d555a3</citedby><cites>FETCH-LOGICAL-c546t-5f7d2163b1b212004aed0f25adda0094f34ea407c3da0782f096e0c5e83d555a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/sj.onc.1207146$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/sj.onc.1207146$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,2725,27923,27924,41487,42556,51318</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/14557812$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gulbins, Erich</creatorcontrib><creatorcontrib>Kolesnick, Richard</creatorcontrib><title>Raft ceramide in molecular medicine</title><title>Oncogene</title><addtitle>Oncogene</addtitle><addtitle>Oncogene</addtitle><description>Ceramide, generated by the action of acid sphingomyelinase (ASM), has emerged as a biochemical mediator of stimuli as diverse as ionizing radiation, chemotherapy, UVA light, heat, CD95, reperfusion injury, as well as infection with some pathogenic bacteria and viruses. ASM activity is also crucial for developmental programmed cell death of oocytes by apoptosis. Recently, we proposed a comprehensive model that might explain these diverse functions of ceramide: Upon contacting the relevant stimuli, ASM translocates into and generates ceramide within distinct plasma membrane sphingolipid-enriched microdomains termed rafts. Ceramide, which manifests a unique biophysical property, the capability to self-associate through hydrogen bonding, provides the driving force that results in the coalescence of microscopic rafts into large-membrane macrodomains. These structures serve as platforms for protein concentration and oligomerization, transmitting signals across the plasma membrane. Preliminary data suggest that manipulation of ceramide metabolism and/or the function of ceramide-enriched membrane platforms may present novel therapeutic opportunities for the treatment of cancer, degenerative disorders, pathogenic infections or cardiovascular diseases.</description><subject>Acids</subject><subject>Animals</subject><subject>Apoptosis</subject><subject>Apoptosis - radiation effects</subject><subject>Autoimmune Diseases - metabolism</subject><subject>Bacteria</subject><subject>Cardiovascular diseases</subject><subject>CD95 antigen</subject><subject>Cell Biology</subject><subject>Cell death</subject><subject>Ceramide</subject><subject>Ceramides - physiology</subject><subject>Chemotherapy</subject><subject>Disease</subject><subject>Drug Therapy</subject><subject>Human Genetics</subject><subject>Humans</subject><subject>Hydrogen bonding</subject><subject>Internal Medicine</subject><subject>Ionizing radiation</subject><subject>Lipid rafts</subject><subject>Medicine</subject><subject>Medicine &amp; Public Health</subject><subject>Membrane Microdomains - physiology</subject><subject>Nervous system</subject><subject>Oligomerization</subject><subject>Oncology</subject><subject>Oocytes</subject><subject>Pathogenesis</subject><subject>Plasma</subject><subject>Preventive Medicine</subject><subject>Radiation</subject><subject>Reperfusion</subject><subject>review</subject><subject>Signal transduction</subject><subject>Sphingomyelin phosphodiesterase</subject><subject>Sphingomyelin Phosphodiesterase - metabolism</subject><issn>0950-9232</issn><issn>1476-5594</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqFkUlrHDEQhUWIsSeOr7klDDHk1uMqLa3W0RhnAYMhJGehUZeMhl4cqfvgfx8N0zAm2AQdhFRfPb3SY-wDwgZBNFd5txkHv0EOGmX9hq1Q6rpSysi3bAVGQWW44GfsXc47ANAG-Ck7Q6mUbpCv2OVPF6a1p-T62NI6Dut-7MjPnUvrntro40Dv2UlwXaaLZT9nv7_e_rr5Xt3df_txc31XeSXrqVJBtxxrscUtL35AOmohcOXa1gEYGYQkJ0F7Uc664QFMTeAVNaJVSjlxzr4cdB_T-GemPNk-Zk9d5wYa52w1ct3Imv8XRFN8IGABL_8Bd-OchjKE5bVEIbBRe-rzqxTXQpbfeib14DqycQjjlJzfv2uvsTFYa2NMoTYvUGW11Ec_DhRiuX-pwacx50TBPqbYu_RkEew-YZt3tiRsl4RLw6fF7LwtAR3xJdICXB2AXErDA6XjNK9Kfjx0DG6aEx0ll_pfOgO2Mw</recordid><startdate>20031013</startdate><enddate>20031013</enddate><creator>Gulbins, Erich</creator><creator>Kolesnick, Richard</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>20031013</creationdate><title>Raft ceramide in molecular medicine</title><author>Gulbins, Erich ; Kolesnick, Richard</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c546t-5f7d2163b1b212004aed0f25adda0094f34ea407c3da0782f096e0c5e83d555a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Acids</topic><topic>Animals</topic><topic>Apoptosis</topic><topic>Apoptosis - radiation effects</topic><topic>Autoimmune Diseases - metabolism</topic><topic>Bacteria</topic><topic>Cardiovascular diseases</topic><topic>CD95 antigen</topic><topic>Cell Biology</topic><topic>Cell death</topic><topic>Ceramide</topic><topic>Ceramides - physiology</topic><topic>Chemotherapy</topic><topic>Disease</topic><topic>Drug Therapy</topic><topic>Human Genetics</topic><topic>Humans</topic><topic>Hydrogen bonding</topic><topic>Internal Medicine</topic><topic>Ionizing radiation</topic><topic>Lipid rafts</topic><topic>Medicine</topic><topic>Medicine &amp; Public Health</topic><topic>Membrane Microdomains - physiology</topic><topic>Nervous system</topic><topic>Oligomerization</topic><topic>Oncology</topic><topic>Oocytes</topic><topic>Pathogenesis</topic><topic>Plasma</topic><topic>Preventive Medicine</topic><topic>Radiation</topic><topic>Reperfusion</topic><topic>review</topic><topic>Signal transduction</topic><topic>Sphingomyelin phosphodiesterase</topic><topic>Sphingomyelin Phosphodiesterase - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gulbins, Erich</creatorcontrib><creatorcontrib>Kolesnick, Richard</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Oncogene</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gulbins, Erich</au><au>Kolesnick, Richard</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Raft ceramide in molecular medicine</atitle><jtitle>Oncogene</jtitle><stitle>Oncogene</stitle><addtitle>Oncogene</addtitle><date>2003-10-13</date><risdate>2003</risdate><volume>22</volume><issue>45</issue><spage>7070</spage><epage>7077</epage><pages>7070-7077</pages><issn>0950-9232</issn><eissn>1476-5594</eissn><coden>ONCNES</coden><abstract>Ceramide, generated by the action of acid sphingomyelinase (ASM), has emerged as a biochemical mediator of stimuli as diverse as ionizing radiation, chemotherapy, UVA light, heat, CD95, reperfusion injury, as well as infection with some pathogenic bacteria and viruses. ASM activity is also crucial for developmental programmed cell death of oocytes by apoptosis. Recently, we proposed a comprehensive model that might explain these diverse functions of ceramide: Upon contacting the relevant stimuli, ASM translocates into and generates ceramide within distinct plasma membrane sphingolipid-enriched microdomains termed rafts. Ceramide, which manifests a unique biophysical property, the capability to self-associate through hydrogen bonding, provides the driving force that results in the coalescence of microscopic rafts into large-membrane macrodomains. These structures serve as platforms for protein concentration and oligomerization, transmitting signals across the plasma membrane. Preliminary data suggest that manipulation of ceramide metabolism and/or the function of ceramide-enriched membrane platforms may present novel therapeutic opportunities for the treatment of cancer, degenerative disorders, pathogenic infections or cardiovascular diseases.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>14557812</pmid><doi>10.1038/sj.onc.1207146</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0950-9232
ispartof Oncogene, 2003-10, Vol.22 (45), p.7070-7077
issn 0950-9232
1476-5594
language eng
recordid cdi_proquest_miscellaneous_71278462
source MEDLINE; Nature; EZB-FREE-00999 freely available EZB journals; SpringerLink Journals - AutoHoldings
subjects Acids
Animals
Apoptosis
Apoptosis - radiation effects
Autoimmune Diseases - metabolism
Bacteria
Cardiovascular diseases
CD95 antigen
Cell Biology
Cell death
Ceramide
Ceramides - physiology
Chemotherapy
Disease
Drug Therapy
Human Genetics
Humans
Hydrogen bonding
Internal Medicine
Ionizing radiation
Lipid rafts
Medicine
Medicine & Public Health
Membrane Microdomains - physiology
Nervous system
Oligomerization
Oncology
Oocytes
Pathogenesis
Plasma
Preventive Medicine
Radiation
Reperfusion
review
Signal transduction
Sphingomyelin phosphodiesterase
Sphingomyelin Phosphodiesterase - metabolism
title Raft ceramide in molecular medicine
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T00%3A43%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Raft%20ceramide%20in%20molecular%20medicine&rft.jtitle=Oncogene&rft.au=Gulbins,%20Erich&rft.date=2003-10-13&rft.volume=22&rft.issue=45&rft.spage=7070&rft.epage=7077&rft.pages=7070-7077&rft.issn=0950-9232&rft.eissn=1476-5594&rft.coden=ONCNES&rft_id=info:doi/10.1038/sj.onc.1207146&rft_dat=%3Cgale_proqu%3EA189167999%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=227341451&rft_id=info:pmid/14557812&rft_galeid=A189167999&rfr_iscdi=true