Raft ceramide in molecular medicine
Ceramide, generated by the action of acid sphingomyelinase (ASM), has emerged as a biochemical mediator of stimuli as diverse as ionizing radiation, chemotherapy, UVA light, heat, CD95, reperfusion injury, as well as infection with some pathogenic bacteria and viruses. ASM activity is also crucial f...
Gespeichert in:
Veröffentlicht in: | Oncogene 2003-10, Vol.22 (45), p.7070-7077 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 7077 |
---|---|
container_issue | 45 |
container_start_page | 7070 |
container_title | Oncogene |
container_volume | 22 |
creator | Gulbins, Erich Kolesnick, Richard |
description | Ceramide, generated by the action of acid sphingomyelinase (ASM), has emerged as a biochemical mediator of stimuli as diverse as ionizing radiation, chemotherapy, UVA light, heat, CD95, reperfusion injury, as well as infection with some pathogenic bacteria and viruses. ASM activity is also crucial for developmental programmed cell death of oocytes by apoptosis. Recently, we proposed a comprehensive model that might explain these diverse functions of ceramide: Upon contacting the relevant stimuli, ASM translocates into and generates ceramide within distinct plasma membrane sphingolipid-enriched microdomains termed rafts. Ceramide, which manifests a unique biophysical property, the capability to self-associate through hydrogen bonding, provides the driving force that results in the coalescence of microscopic rafts into large-membrane macrodomains. These structures serve as platforms for protein concentration and oligomerization, transmitting signals across the plasma membrane. Preliminary data suggest that manipulation of ceramide metabolism and/or the function of ceramide-enriched membrane platforms may present novel therapeutic opportunities for the treatment of cancer, degenerative disorders, pathogenic infections or cardiovascular diseases. |
doi_str_mv | 10.1038/sj.onc.1207146 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_71278462</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A189167999</galeid><sourcerecordid>A189167999</sourcerecordid><originalsourceid>FETCH-LOGICAL-c546t-5f7d2163b1b212004aed0f25adda0094f34ea407c3da0782f096e0c5e83d555a3</originalsourceid><addsrcrecordid>eNqFkUlrHDEQhUWIsSeOr7klDDHk1uMqLa3W0RhnAYMhJGehUZeMhl4cqfvgfx8N0zAm2AQdhFRfPb3SY-wDwgZBNFd5txkHv0EOGmX9hq1Q6rpSysi3bAVGQWW44GfsXc47ANAG-Ck7Q6mUbpCv2OVPF6a1p-T62NI6Dut-7MjPnUvrntro40Dv2UlwXaaLZT9nv7_e_rr5Xt3df_txc31XeSXrqVJBtxxrscUtL35AOmohcOXa1gEYGYQkJ0F7Uc664QFMTeAVNaJVSjlxzr4cdB_T-GemPNk-Zk9d5wYa52w1ct3Imv8XRFN8IGABL_8Bd-OchjKE5bVEIbBRe-rzqxTXQpbfeib14DqycQjjlJzfv2uvsTFYa2NMoTYvUGW11Ec_DhRiuX-pwacx50TBPqbYu_RkEew-YZt3tiRsl4RLw6fF7LwtAR3xJdICXB2AXErDA6XjNK9Kfjx0DG6aEx0ll_pfOgO2Mw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>227341451</pqid></control><display><type>article</type><title>Raft ceramide in molecular medicine</title><source>MEDLINE</source><source>Nature</source><source>EZB-FREE-00999 freely available EZB journals</source><source>SpringerLink Journals - AutoHoldings</source><creator>Gulbins, Erich ; Kolesnick, Richard</creator><creatorcontrib>Gulbins, Erich ; Kolesnick, Richard</creatorcontrib><description>Ceramide, generated by the action of acid sphingomyelinase (ASM), has emerged as a biochemical mediator of stimuli as diverse as ionizing radiation, chemotherapy, UVA light, heat, CD95, reperfusion injury, as well as infection with some pathogenic bacteria and viruses. ASM activity is also crucial for developmental programmed cell death of oocytes by apoptosis. Recently, we proposed a comprehensive model that might explain these diverse functions of ceramide: Upon contacting the relevant stimuli, ASM translocates into and generates ceramide within distinct plasma membrane sphingolipid-enriched microdomains termed rafts. Ceramide, which manifests a unique biophysical property, the capability to self-associate through hydrogen bonding, provides the driving force that results in the coalescence of microscopic rafts into large-membrane macrodomains. These structures serve as platforms for protein concentration and oligomerization, transmitting signals across the plasma membrane. Preliminary data suggest that manipulation of ceramide metabolism and/or the function of ceramide-enriched membrane platforms may present novel therapeutic opportunities for the treatment of cancer, degenerative disorders, pathogenic infections or cardiovascular diseases.</description><identifier>ISSN: 0950-9232</identifier><identifier>EISSN: 1476-5594</identifier><identifier>DOI: 10.1038/sj.onc.1207146</identifier><identifier>PMID: 14557812</identifier><identifier>CODEN: ONCNES</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>Acids ; Animals ; Apoptosis ; Apoptosis - radiation effects ; Autoimmune Diseases - metabolism ; Bacteria ; Cardiovascular diseases ; CD95 antigen ; Cell Biology ; Cell death ; Ceramide ; Ceramides - physiology ; Chemotherapy ; Disease ; Drug Therapy ; Human Genetics ; Humans ; Hydrogen bonding ; Internal Medicine ; Ionizing radiation ; Lipid rafts ; Medicine ; Medicine & Public Health ; Membrane Microdomains - physiology ; Nervous system ; Oligomerization ; Oncology ; Oocytes ; Pathogenesis ; Plasma ; Preventive Medicine ; Radiation ; Reperfusion ; review ; Signal transduction ; Sphingomyelin phosphodiesterase ; Sphingomyelin Phosphodiesterase - metabolism</subject><ispartof>Oncogene, 2003-10, Vol.22 (45), p.7070-7077</ispartof><rights>Springer Nature Limited 2003</rights><rights>COPYRIGHT 2003 Nature Publishing Group</rights><rights>Copyright Nature Publishing Group Oct 13, 2003</rights><rights>Nature Publishing Group 2003.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c546t-5f7d2163b1b212004aed0f25adda0094f34ea407c3da0782f096e0c5e83d555a3</citedby><cites>FETCH-LOGICAL-c546t-5f7d2163b1b212004aed0f25adda0094f34ea407c3da0782f096e0c5e83d555a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/sj.onc.1207146$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/sj.onc.1207146$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,2725,27923,27924,41487,42556,51318</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/14557812$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gulbins, Erich</creatorcontrib><creatorcontrib>Kolesnick, Richard</creatorcontrib><title>Raft ceramide in molecular medicine</title><title>Oncogene</title><addtitle>Oncogene</addtitle><addtitle>Oncogene</addtitle><description>Ceramide, generated by the action of acid sphingomyelinase (ASM), has emerged as a biochemical mediator of stimuli as diverse as ionizing radiation, chemotherapy, UVA light, heat, CD95, reperfusion injury, as well as infection with some pathogenic bacteria and viruses. ASM activity is also crucial for developmental programmed cell death of oocytes by apoptosis. Recently, we proposed a comprehensive model that might explain these diverse functions of ceramide: Upon contacting the relevant stimuli, ASM translocates into and generates ceramide within distinct plasma membrane sphingolipid-enriched microdomains termed rafts. Ceramide, which manifests a unique biophysical property, the capability to self-associate through hydrogen bonding, provides the driving force that results in the coalescence of microscopic rafts into large-membrane macrodomains. These structures serve as platforms for protein concentration and oligomerization, transmitting signals across the plasma membrane. Preliminary data suggest that manipulation of ceramide metabolism and/or the function of ceramide-enriched membrane platforms may present novel therapeutic opportunities for the treatment of cancer, degenerative disorders, pathogenic infections or cardiovascular diseases.</description><subject>Acids</subject><subject>Animals</subject><subject>Apoptosis</subject><subject>Apoptosis - radiation effects</subject><subject>Autoimmune Diseases - metabolism</subject><subject>Bacteria</subject><subject>Cardiovascular diseases</subject><subject>CD95 antigen</subject><subject>Cell Biology</subject><subject>Cell death</subject><subject>Ceramide</subject><subject>Ceramides - physiology</subject><subject>Chemotherapy</subject><subject>Disease</subject><subject>Drug Therapy</subject><subject>Human Genetics</subject><subject>Humans</subject><subject>Hydrogen bonding</subject><subject>Internal Medicine</subject><subject>Ionizing radiation</subject><subject>Lipid rafts</subject><subject>Medicine</subject><subject>Medicine & Public Health</subject><subject>Membrane Microdomains - physiology</subject><subject>Nervous system</subject><subject>Oligomerization</subject><subject>Oncology</subject><subject>Oocytes</subject><subject>Pathogenesis</subject><subject>Plasma</subject><subject>Preventive Medicine</subject><subject>Radiation</subject><subject>Reperfusion</subject><subject>review</subject><subject>Signal transduction</subject><subject>Sphingomyelin phosphodiesterase</subject><subject>Sphingomyelin Phosphodiesterase - metabolism</subject><issn>0950-9232</issn><issn>1476-5594</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqFkUlrHDEQhUWIsSeOr7klDDHk1uMqLa3W0RhnAYMhJGehUZeMhl4cqfvgfx8N0zAm2AQdhFRfPb3SY-wDwgZBNFd5txkHv0EOGmX9hq1Q6rpSysi3bAVGQWW44GfsXc47ANAG-Ck7Q6mUbpCv2OVPF6a1p-T62NI6Dut-7MjPnUvrntro40Dv2UlwXaaLZT9nv7_e_rr5Xt3df_txc31XeSXrqVJBtxxrscUtL35AOmohcOXa1gEYGYQkJ0F7Uc664QFMTeAVNaJVSjlxzr4cdB_T-GemPNk-Zk9d5wYa52w1ct3Imv8XRFN8IGABL_8Bd-OchjKE5bVEIbBRe-rzqxTXQpbfeib14DqycQjjlJzfv2uvsTFYa2NMoTYvUGW11Ec_DhRiuX-pwacx50TBPqbYu_RkEew-YZt3tiRsl4RLw6fF7LwtAR3xJdICXB2AXErDA6XjNK9Kfjx0DG6aEx0ll_pfOgO2Mw</recordid><startdate>20031013</startdate><enddate>20031013</enddate><creator>Gulbins, Erich</creator><creator>Kolesnick, Richard</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>20031013</creationdate><title>Raft ceramide in molecular medicine</title><author>Gulbins, Erich ; Kolesnick, Richard</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c546t-5f7d2163b1b212004aed0f25adda0094f34ea407c3da0782f096e0c5e83d555a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Acids</topic><topic>Animals</topic><topic>Apoptosis</topic><topic>Apoptosis - radiation effects</topic><topic>Autoimmune Diseases - metabolism</topic><topic>Bacteria</topic><topic>Cardiovascular diseases</topic><topic>CD95 antigen</topic><topic>Cell Biology</topic><topic>Cell death</topic><topic>Ceramide</topic><topic>Ceramides - physiology</topic><topic>Chemotherapy</topic><topic>Disease</topic><topic>Drug Therapy</topic><topic>Human Genetics</topic><topic>Humans</topic><topic>Hydrogen bonding</topic><topic>Internal Medicine</topic><topic>Ionizing radiation</topic><topic>Lipid rafts</topic><topic>Medicine</topic><topic>Medicine & Public Health</topic><topic>Membrane Microdomains - physiology</topic><topic>Nervous system</topic><topic>Oligomerization</topic><topic>Oncology</topic><topic>Oocytes</topic><topic>Pathogenesis</topic><topic>Plasma</topic><topic>Preventive Medicine</topic><topic>Radiation</topic><topic>Reperfusion</topic><topic>review</topic><topic>Signal transduction</topic><topic>Sphingomyelin phosphodiesterase</topic><topic>Sphingomyelin Phosphodiesterase - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gulbins, Erich</creatorcontrib><creatorcontrib>Kolesnick, Richard</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Oncogene</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gulbins, Erich</au><au>Kolesnick, Richard</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Raft ceramide in molecular medicine</atitle><jtitle>Oncogene</jtitle><stitle>Oncogene</stitle><addtitle>Oncogene</addtitle><date>2003-10-13</date><risdate>2003</risdate><volume>22</volume><issue>45</issue><spage>7070</spage><epage>7077</epage><pages>7070-7077</pages><issn>0950-9232</issn><eissn>1476-5594</eissn><coden>ONCNES</coden><abstract>Ceramide, generated by the action of acid sphingomyelinase (ASM), has emerged as a biochemical mediator of stimuli as diverse as ionizing radiation, chemotherapy, UVA light, heat, CD95, reperfusion injury, as well as infection with some pathogenic bacteria and viruses. ASM activity is also crucial for developmental programmed cell death of oocytes by apoptosis. Recently, we proposed a comprehensive model that might explain these diverse functions of ceramide: Upon contacting the relevant stimuli, ASM translocates into and generates ceramide within distinct plasma membrane sphingolipid-enriched microdomains termed rafts. Ceramide, which manifests a unique biophysical property, the capability to self-associate through hydrogen bonding, provides the driving force that results in the coalescence of microscopic rafts into large-membrane macrodomains. These structures serve as platforms for protein concentration and oligomerization, transmitting signals across the plasma membrane. Preliminary data suggest that manipulation of ceramide metabolism and/or the function of ceramide-enriched membrane platforms may present novel therapeutic opportunities for the treatment of cancer, degenerative disorders, pathogenic infections or cardiovascular diseases.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>14557812</pmid><doi>10.1038/sj.onc.1207146</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0950-9232 |
ispartof | Oncogene, 2003-10, Vol.22 (45), p.7070-7077 |
issn | 0950-9232 1476-5594 |
language | eng |
recordid | cdi_proquest_miscellaneous_71278462 |
source | MEDLINE; Nature; EZB-FREE-00999 freely available EZB journals; SpringerLink Journals - AutoHoldings |
subjects | Acids Animals Apoptosis Apoptosis - radiation effects Autoimmune Diseases - metabolism Bacteria Cardiovascular diseases CD95 antigen Cell Biology Cell death Ceramide Ceramides - physiology Chemotherapy Disease Drug Therapy Human Genetics Humans Hydrogen bonding Internal Medicine Ionizing radiation Lipid rafts Medicine Medicine & Public Health Membrane Microdomains - physiology Nervous system Oligomerization Oncology Oocytes Pathogenesis Plasma Preventive Medicine Radiation Reperfusion review Signal transduction Sphingomyelin phosphodiesterase Sphingomyelin Phosphodiesterase - metabolism |
title | Raft ceramide in molecular medicine |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T00%3A43%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Raft%20ceramide%20in%20molecular%20medicine&rft.jtitle=Oncogene&rft.au=Gulbins,%20Erich&rft.date=2003-10-13&rft.volume=22&rft.issue=45&rft.spage=7070&rft.epage=7077&rft.pages=7070-7077&rft.issn=0950-9232&rft.eissn=1476-5594&rft.coden=ONCNES&rft_id=info:doi/10.1038/sj.onc.1207146&rft_dat=%3Cgale_proqu%3EA189167999%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=227341451&rft_id=info:pmid/14557812&rft_galeid=A189167999&rfr_iscdi=true |