The voltage-sensitive motor protein and the Ca2+-sensitive cytoskeleton in developing rat cochlear outer hair cells

Cochlear outer hair cells (OHCs) possess a unique fast voltage‐driven motility associated with a voltage‐sensitive motor protein embedded in the basolateral membrane. This mechanism is believed to underlie the cochlear amplification in mammals. OHCs also have a Ca2+/calmodulin‐dependent mechanical p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The European journal of neuroscience 2001-12, Vol.14 (12), p.1947-1952
Hauptverfasser: Beurg, Maryline, Bouleau, Yohan, Dulon, Didier
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1952
container_issue 12
container_start_page 1947
container_title The European journal of neuroscience
container_volume 14
creator Beurg, Maryline
Bouleau, Yohan
Dulon, Didier
description Cochlear outer hair cells (OHCs) possess a unique fast voltage‐driven motility associated with a voltage‐sensitive motor protein embedded in the basolateral membrane. This mechanism is believed to underlie the cochlear amplification in mammals. OHCs also have a Ca2+/calmodulin‐dependent mechanical pathway which involves a submembranous circumferential cytoskeleton. The purpose of this study was to compare the functional appearance of the voltage‐sensitive motor proteins with that involving the Ca2+‐sensitive cytoskeleton during postnatal development of rat OHCs. We demonstrate that whole‐cell electromotility and Ca2+‐voked mechanical responses, by ionomycin, develop concomitantly after postnatal day 5 (P5). These two mechanical properties also develop simultaneously in OHCs isolated from two‐week‐old cultures of P0‐P1 organs of Corti. This excludes the participation of neural innervation in the postnatal maturation of the OHCs' motile properties. In addition, we show that the expression of the membranous voltage‐sensitive motor protein precedes, by several days, the appearance of whole‐cell electromotility. The concomitant development of whole‐cell electromotility and Ca2+‐sensitive motility, both in vivo and in vitro, underlines the cytoskeleton as an important factor in the functional organization of the voltage‐sensitive motor proteins within the plasma membrane.
doi_str_mv 10.1046/j.0953-816x.2001.01826.x
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_71261889</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>71261889</sourcerecordid><originalsourceid>FETCH-LOGICAL-i2316-5c50fa92547c8a570c462276f0e24d582df7d5b9febf83f3e41f8efcd62120c23</originalsourceid><addsrcrecordid>eNpNkU1PGzEQhi1UVFLav1D5xAXtYnvXXu-hBxTxKUpbiRbExXK8Y-KwWQfbSZN_z27DR08z0jzvaOZ9EcKU5JSU4miWk5oXmaRinTNCaE6oZCJf76ARLQXJai7kBzR6he720KcYZ4QQKUr-Ee1RKgUpZT1C8WYKeOXbpB8gi9BFl9wK8NwnH_Ai-ASuw7prcOq5sWaH_0Fmk3x8hBaS73CPNbCC1i9c94CDTth4M21BB-yXCQKeahewgbaNn9Gu1W2ELy91H_0-PbkZn2dXP84uxsdXmWMFFRk3nFhdM15WRmpeEVMKxiphCbCy4ZI1tmr4pLYwsbKwBZTUSrCmEYwyYlixjw62e_s_npYQk5q7OFygO_DLqCrKBJWy7sGvL-ByModGLYKb67BRrzb1wLct8Ne1sHmfEzXEoWZqcFoNcaghDvUvDrVWJ5fXQ9frs63exQTrN70Oj0pURcXV7fWZuvte3P68_8XUn-IZH-iPpQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>71261889</pqid></control><display><type>article</type><title>The voltage-sensitive motor protein and the Ca2+-sensitive cytoskeleton in developing rat cochlear outer hair cells</title><source>MEDLINE</source><source>Wiley Online Library All Journals</source><creator>Beurg, Maryline ; Bouleau, Yohan ; Dulon, Didier</creator><creatorcontrib>Beurg, Maryline ; Bouleau, Yohan ; Dulon, Didier</creatorcontrib><description>Cochlear outer hair cells (OHCs) possess a unique fast voltage‐driven motility associated with a voltage‐sensitive motor protein embedded in the basolateral membrane. This mechanism is believed to underlie the cochlear amplification in mammals. OHCs also have a Ca2+/calmodulin‐dependent mechanical pathway which involves a submembranous circumferential cytoskeleton. The purpose of this study was to compare the functional appearance of the voltage‐sensitive motor proteins with that involving the Ca2+‐sensitive cytoskeleton during postnatal development of rat OHCs. We demonstrate that whole‐cell electromotility and Ca2+‐voked mechanical responses, by ionomycin, develop concomitantly after postnatal day 5 (P5). These two mechanical properties also develop simultaneously in OHCs isolated from two‐week‐old cultures of P0‐P1 organs of Corti. This excludes the participation of neural innervation in the postnatal maturation of the OHCs' motile properties. In addition, we show that the expression of the membranous voltage‐sensitive motor protein precedes, by several days, the appearance of whole‐cell electromotility. The concomitant development of whole‐cell electromotility and Ca2+‐sensitive motility, both in vivo and in vitro, underlines the cytoskeleton as an important factor in the functional organization of the voltage‐sensitive motor proteins within the plasma membrane.</description><identifier>ISSN: 0953-816X</identifier><identifier>EISSN: 1460-9568</identifier><identifier>DOI: 10.1046/j.0953-816x.2001.01826.x</identifier><identifier>PMID: 11860489</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Science Ltd</publisher><subject>Aging - metabolism ; Animals ; Animals, Newborn ; Calcium Signaling - drug effects ; Calcium Signaling - physiology ; Cell Differentiation - physiology ; Cell Membrane - drug effects ; Cell Membrane - metabolism ; Cell Movement - drug effects ; Cell Movement - physiology ; cochlea ; Cytoskeleton - drug effects ; Cytoskeleton - metabolism ; Electric Stimulation ; electromotility ; Hair Cells, Auditory, Outer - cytology ; Hair Cells, Auditory, Outer - growth &amp; development ; Hair Cells, Auditory, Outer - metabolism ; Hearing - physiology ; Ion Channels - drug effects ; Ion Channels - metabolism ; ionomycin ; Ionomycin - pharmacology ; Ionophores - pharmacology ; Membrane Potentials - drug effects ; Membrane Potentials - physiology ; Molecular Motor Proteins - drug effects ; Molecular Motor Proteins - metabolism ; motor protein ; Organ Culture Techniques ; prestin ; Rats ; Rats, Wistar ; Signal Transduction - drug effects ; Signal Transduction - physiology</subject><ispartof>The European journal of neuroscience, 2001-12, Vol.14 (12), p.1947-1952</ispartof><rights>Federation of European Neuroscience Societies</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1046%2Fj.0953-816x.2001.01826.x$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1046%2Fj.0953-816x.2001.01826.x$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1416,27923,27924,45573,45574</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/11860489$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Beurg, Maryline</creatorcontrib><creatorcontrib>Bouleau, Yohan</creatorcontrib><creatorcontrib>Dulon, Didier</creatorcontrib><title>The voltage-sensitive motor protein and the Ca2+-sensitive cytoskeleton in developing rat cochlear outer hair cells</title><title>The European journal of neuroscience</title><addtitle>Eur J Neurosci</addtitle><description>Cochlear outer hair cells (OHCs) possess a unique fast voltage‐driven motility associated with a voltage‐sensitive motor protein embedded in the basolateral membrane. This mechanism is believed to underlie the cochlear amplification in mammals. OHCs also have a Ca2+/calmodulin‐dependent mechanical pathway which involves a submembranous circumferential cytoskeleton. The purpose of this study was to compare the functional appearance of the voltage‐sensitive motor proteins with that involving the Ca2+‐sensitive cytoskeleton during postnatal development of rat OHCs. We demonstrate that whole‐cell electromotility and Ca2+‐voked mechanical responses, by ionomycin, develop concomitantly after postnatal day 5 (P5). These two mechanical properties also develop simultaneously in OHCs isolated from two‐week‐old cultures of P0‐P1 organs of Corti. This excludes the participation of neural innervation in the postnatal maturation of the OHCs' motile properties. In addition, we show that the expression of the membranous voltage‐sensitive motor protein precedes, by several days, the appearance of whole‐cell electromotility. The concomitant development of whole‐cell electromotility and Ca2+‐sensitive motility, both in vivo and in vitro, underlines the cytoskeleton as an important factor in the functional organization of the voltage‐sensitive motor proteins within the plasma membrane.</description><subject>Aging - metabolism</subject><subject>Animals</subject><subject>Animals, Newborn</subject><subject>Calcium Signaling - drug effects</subject><subject>Calcium Signaling - physiology</subject><subject>Cell Differentiation - physiology</subject><subject>Cell Membrane - drug effects</subject><subject>Cell Membrane - metabolism</subject><subject>Cell Movement - drug effects</subject><subject>Cell Movement - physiology</subject><subject>cochlea</subject><subject>Cytoskeleton - drug effects</subject><subject>Cytoskeleton - metabolism</subject><subject>Electric Stimulation</subject><subject>electromotility</subject><subject>Hair Cells, Auditory, Outer - cytology</subject><subject>Hair Cells, Auditory, Outer - growth &amp; development</subject><subject>Hair Cells, Auditory, Outer - metabolism</subject><subject>Hearing - physiology</subject><subject>Ion Channels - drug effects</subject><subject>Ion Channels - metabolism</subject><subject>ionomycin</subject><subject>Ionomycin - pharmacology</subject><subject>Ionophores - pharmacology</subject><subject>Membrane Potentials - drug effects</subject><subject>Membrane Potentials - physiology</subject><subject>Molecular Motor Proteins - drug effects</subject><subject>Molecular Motor Proteins - metabolism</subject><subject>motor protein</subject><subject>Organ Culture Techniques</subject><subject>prestin</subject><subject>Rats</subject><subject>Rats, Wistar</subject><subject>Signal Transduction - drug effects</subject><subject>Signal Transduction - physiology</subject><issn>0953-816X</issn><issn>1460-9568</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpNkU1PGzEQhi1UVFLav1D5xAXtYnvXXu-hBxTxKUpbiRbExXK8Y-KwWQfbSZN_z27DR08z0jzvaOZ9EcKU5JSU4miWk5oXmaRinTNCaE6oZCJf76ARLQXJai7kBzR6he720KcYZ4QQKUr-Ee1RKgUpZT1C8WYKeOXbpB8gi9BFl9wK8NwnH_Ai-ASuw7prcOq5sWaH_0Fmk3x8hBaS73CPNbCC1i9c94CDTth4M21BB-yXCQKeahewgbaNn9Gu1W2ELy91H_0-PbkZn2dXP84uxsdXmWMFFRk3nFhdM15WRmpeEVMKxiphCbCy4ZI1tmr4pLYwsbKwBZTUSrCmEYwyYlixjw62e_s_npYQk5q7OFygO_DLqCrKBJWy7sGvL-ByModGLYKb67BRrzb1wLct8Ne1sHmfEzXEoWZqcFoNcaghDvUvDrVWJ5fXQ9frs63exQTrN70Oj0pURcXV7fWZuvte3P68_8XUn-IZH-iPpQ</recordid><startdate>200112</startdate><enddate>200112</enddate><creator>Beurg, Maryline</creator><creator>Bouleau, Yohan</creator><creator>Dulon, Didier</creator><general>Blackwell Science Ltd</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>7X8</scope></search><sort><creationdate>200112</creationdate><title>The voltage-sensitive motor protein and the Ca2+-sensitive cytoskeleton in developing rat cochlear outer hair cells</title><author>Beurg, Maryline ; Bouleau, Yohan ; Dulon, Didier</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i2316-5c50fa92547c8a570c462276f0e24d582df7d5b9febf83f3e41f8efcd62120c23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Aging - metabolism</topic><topic>Animals</topic><topic>Animals, Newborn</topic><topic>Calcium Signaling - drug effects</topic><topic>Calcium Signaling - physiology</topic><topic>Cell Differentiation - physiology</topic><topic>Cell Membrane - drug effects</topic><topic>Cell Membrane - metabolism</topic><topic>Cell Movement - drug effects</topic><topic>Cell Movement - physiology</topic><topic>cochlea</topic><topic>Cytoskeleton - drug effects</topic><topic>Cytoskeleton - metabolism</topic><topic>Electric Stimulation</topic><topic>electromotility</topic><topic>Hair Cells, Auditory, Outer - cytology</topic><topic>Hair Cells, Auditory, Outer - growth &amp; development</topic><topic>Hair Cells, Auditory, Outer - metabolism</topic><topic>Hearing - physiology</topic><topic>Ion Channels - drug effects</topic><topic>Ion Channels - metabolism</topic><topic>ionomycin</topic><topic>Ionomycin - pharmacology</topic><topic>Ionophores - pharmacology</topic><topic>Membrane Potentials - drug effects</topic><topic>Membrane Potentials - physiology</topic><topic>Molecular Motor Proteins - drug effects</topic><topic>Molecular Motor Proteins - metabolism</topic><topic>motor protein</topic><topic>Organ Culture Techniques</topic><topic>prestin</topic><topic>Rats</topic><topic>Rats, Wistar</topic><topic>Signal Transduction - drug effects</topic><topic>Signal Transduction - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Beurg, Maryline</creatorcontrib><creatorcontrib>Bouleau, Yohan</creatorcontrib><creatorcontrib>Dulon, Didier</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>MEDLINE - Academic</collection><jtitle>The European journal of neuroscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Beurg, Maryline</au><au>Bouleau, Yohan</au><au>Dulon, Didier</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The voltage-sensitive motor protein and the Ca2+-sensitive cytoskeleton in developing rat cochlear outer hair cells</atitle><jtitle>The European journal of neuroscience</jtitle><addtitle>Eur J Neurosci</addtitle><date>2001-12</date><risdate>2001</risdate><volume>14</volume><issue>12</issue><spage>1947</spage><epage>1952</epage><pages>1947-1952</pages><issn>0953-816X</issn><eissn>1460-9568</eissn><abstract>Cochlear outer hair cells (OHCs) possess a unique fast voltage‐driven motility associated with a voltage‐sensitive motor protein embedded in the basolateral membrane. This mechanism is believed to underlie the cochlear amplification in mammals. OHCs also have a Ca2+/calmodulin‐dependent mechanical pathway which involves a submembranous circumferential cytoskeleton. The purpose of this study was to compare the functional appearance of the voltage‐sensitive motor proteins with that involving the Ca2+‐sensitive cytoskeleton during postnatal development of rat OHCs. We demonstrate that whole‐cell electromotility and Ca2+‐voked mechanical responses, by ionomycin, develop concomitantly after postnatal day 5 (P5). These two mechanical properties also develop simultaneously in OHCs isolated from two‐week‐old cultures of P0‐P1 organs of Corti. This excludes the participation of neural innervation in the postnatal maturation of the OHCs' motile properties. In addition, we show that the expression of the membranous voltage‐sensitive motor protein precedes, by several days, the appearance of whole‐cell electromotility. The concomitant development of whole‐cell electromotility and Ca2+‐sensitive motility, both in vivo and in vitro, underlines the cytoskeleton as an important factor in the functional organization of the voltage‐sensitive motor proteins within the plasma membrane.</abstract><cop>Oxford, UK</cop><pub>Blackwell Science Ltd</pub><pmid>11860489</pmid><doi>10.1046/j.0953-816x.2001.01826.x</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0953-816X
ispartof The European journal of neuroscience, 2001-12, Vol.14 (12), p.1947-1952
issn 0953-816X
1460-9568
language eng
recordid cdi_proquest_miscellaneous_71261889
source MEDLINE; Wiley Online Library All Journals
subjects Aging - metabolism
Animals
Animals, Newborn
Calcium Signaling - drug effects
Calcium Signaling - physiology
Cell Differentiation - physiology
Cell Membrane - drug effects
Cell Membrane - metabolism
Cell Movement - drug effects
Cell Movement - physiology
cochlea
Cytoskeleton - drug effects
Cytoskeleton - metabolism
Electric Stimulation
electromotility
Hair Cells, Auditory, Outer - cytology
Hair Cells, Auditory, Outer - growth & development
Hair Cells, Auditory, Outer - metabolism
Hearing - physiology
Ion Channels - drug effects
Ion Channels - metabolism
ionomycin
Ionomycin - pharmacology
Ionophores - pharmacology
Membrane Potentials - drug effects
Membrane Potentials - physiology
Molecular Motor Proteins - drug effects
Molecular Motor Proteins - metabolism
motor protein
Organ Culture Techniques
prestin
Rats
Rats, Wistar
Signal Transduction - drug effects
Signal Transduction - physiology
title The voltage-sensitive motor protein and the Ca2+-sensitive cytoskeleton in developing rat cochlear outer hair cells
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T15%3A18%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20voltage-sensitive%20motor%20protein%20and%20the%20Ca2+-sensitive%20cytoskeleton%20in%20developing%20rat%20cochlear%20outer%20hair%20cells&rft.jtitle=The%20European%20journal%20of%20neuroscience&rft.au=Beurg,%20Maryline&rft.date=2001-12&rft.volume=14&rft.issue=12&rft.spage=1947&rft.epage=1952&rft.pages=1947-1952&rft.issn=0953-816X&rft.eissn=1460-9568&rft_id=info:doi/10.1046/j.0953-816x.2001.01826.x&rft_dat=%3Cproquest_pubme%3E71261889%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=71261889&rft_id=info:pmid/11860489&rfr_iscdi=true