The crystal structure of adenylosuccinate lyase from Pyrobaculum aerophilum reveals an intracellular protein with three disulfide bonds
Adenylosuccinate lyase catalyzes two separate reactions in the de novo purine biosynthetic pathway. Through its dual action in this pathway, adenylosuccinate lyase plays an integral part in cellular replication and metabolism. Mutations in the human enzyme can result in severe neurological disorders...
Gespeichert in:
Veröffentlicht in: | Journal of molecular biology 2000-08, Vol.301 (2), p.433-450 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 450 |
---|---|
container_issue | 2 |
container_start_page | 433 |
container_title | Journal of molecular biology |
container_volume | 301 |
creator | Toth, E A Worby, C Dixon, J E Goedken, E R Marqusee, S Yeates, T O |
description | Adenylosuccinate lyase catalyzes two separate reactions in the de novo purine biosynthetic pathway. Through its dual action in this pathway, adenylosuccinate lyase plays an integral part in cellular replication and metabolism. Mutations in the human enzyme can result in severe neurological disorders, including mental retardation with autistic features. The crystal structure of adenylosuccinate lyase from the hyperthermophilic archaebacterium Pyrobaculum aerophilum has been determined to 2.1 A resolution. Although both the fold of the monomer and the architecture of the tetrameric assembly are similar to adenylosuccinate lyase from the thermophilic eubacterium Thermotoga maritima, the archaebacterial lyase contains unique features. Surprisingly, the structure of adenylosuccinate lyase from P. aerophilum reveals that this intracellular protein contains three disulfide bonds that contribute significantly to its stability against thermal and chemical denaturation. The observation of multiple disulfide bonds in the recombinant form of the enzyme suggests the need for further investigations into whether the intracellular environment of P. aerophilum, and possibly other hyperthermophiles, may be compatible with protein disulfide bond formation. In addition, the protein is shorter in P. aerophilum than it is in other organisms. This abbreviation results from an internal excision of a cluster of helices that may be involved in protein-protein interactions in other organisms and may relate to the observed clinical effects of human mutations in that region. |
doi_str_mv | 10.1006/jmbi.2000.3970 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_71260364</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>17558267</sourcerecordid><originalsourceid>FETCH-LOGICAL-p238t-8cbfead81bb9d2c8b3ebe3089ee7bd87982e531e4313663a7429bc58b95f9c993</originalsourceid><addsrcrecordid>eNqFkLlOAzEQhl2ASAi0lMgVXYKPPewSRVxSJChCvbK9s1pH3gMfoH0CXpuNgJpqRprvH336EbqiZEMJKW4PnbYbRgjZcFmSE7QkhLE1E7xYoPMQDvMl55k4QwtKJCtyKpfoa98CNn4KUTkcok8mJg94aLCqoZ_cEJIxtlcRsJtUANz4ocOvkx-0MsmlDivww9ja4-rhA5QLWPXY9tErA84lpzwe_RDB9vjTxhbH1gPg2obkGlsD1kNfhwt02sxRuPydK_T2cL_fPq13L4_P27vdemRcxLUwugFVC6q1rJkRmoMGToQEKHUtSikY5JxCxikvCq7KjEltcqFl3kgjJV-hm5-_s9J7ghCrzoajp-phSKEqKSsIL7J_QVrmuWBFOYPXv2DSHdTV6G2n_FT9dcy_AV-5gMo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>17558267</pqid></control><display><type>article</type><title>The crystal structure of adenylosuccinate lyase from Pyrobaculum aerophilum reveals an intracellular protein with three disulfide bonds</title><source>MEDLINE</source><source>ScienceDirect Journals (5 years ago - present)</source><creator>Toth, E A ; Worby, C ; Dixon, J E ; Goedken, E R ; Marqusee, S ; Yeates, T O</creator><creatorcontrib>Toth, E A ; Worby, C ; Dixon, J E ; Goedken, E R ; Marqusee, S ; Yeates, T O</creatorcontrib><description>Adenylosuccinate lyase catalyzes two separate reactions in the de novo purine biosynthetic pathway. Through its dual action in this pathway, adenylosuccinate lyase plays an integral part in cellular replication and metabolism. Mutations in the human enzyme can result in severe neurological disorders, including mental retardation with autistic features. The crystal structure of adenylosuccinate lyase from the hyperthermophilic archaebacterium Pyrobaculum aerophilum has been determined to 2.1 A resolution. Although both the fold of the monomer and the architecture of the tetrameric assembly are similar to adenylosuccinate lyase from the thermophilic eubacterium Thermotoga maritima, the archaebacterial lyase contains unique features. Surprisingly, the structure of adenylosuccinate lyase from P. aerophilum reveals that this intracellular protein contains three disulfide bonds that contribute significantly to its stability against thermal and chemical denaturation. The observation of multiple disulfide bonds in the recombinant form of the enzyme suggests the need for further investigations into whether the intracellular environment of P. aerophilum, and possibly other hyperthermophiles, may be compatible with protein disulfide bond formation. In addition, the protein is shorter in P. aerophilum than it is in other organisms. This abbreviation results from an internal excision of a cluster of helices that may be involved in protein-protein interactions in other organisms and may relate to the observed clinical effects of human mutations in that region.</description><identifier>ISSN: 0022-2836</identifier><identifier>DOI: 10.1006/jmbi.2000.3970</identifier><identifier>PMID: 10926519</identifier><language>eng</language><publisher>England</publisher><subject>adenylosuccinate lyase ; Adenylosuccinate Lyase - chemistry ; Adenylosuccinate Lyase - isolation & purification ; Bacterial Proteins - chemistry ; Bacterial Proteins - isolation & purification ; Catalytic Domain ; Crystallography, X-Ray ; disulfide bonds ; Disulfides - chemistry ; Enzyme Stability ; Hot Temperature ; Humans ; Models, Molecular ; Molecular Sequence Data ; Mutation ; Protein Denaturation ; Pyrobaculum aerophilum ; Thermoproteaceae - chemistry</subject><ispartof>Journal of molecular biology, 2000-08, Vol.301 (2), p.433-450</ispartof><rights>Copyright 2000 Academic Press.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/10926519$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Toth, E A</creatorcontrib><creatorcontrib>Worby, C</creatorcontrib><creatorcontrib>Dixon, J E</creatorcontrib><creatorcontrib>Goedken, E R</creatorcontrib><creatorcontrib>Marqusee, S</creatorcontrib><creatorcontrib>Yeates, T O</creatorcontrib><title>The crystal structure of adenylosuccinate lyase from Pyrobaculum aerophilum reveals an intracellular protein with three disulfide bonds</title><title>Journal of molecular biology</title><addtitle>J Mol Biol</addtitle><description>Adenylosuccinate lyase catalyzes two separate reactions in the de novo purine biosynthetic pathway. Through its dual action in this pathway, adenylosuccinate lyase plays an integral part in cellular replication and metabolism. Mutations in the human enzyme can result in severe neurological disorders, including mental retardation with autistic features. The crystal structure of adenylosuccinate lyase from the hyperthermophilic archaebacterium Pyrobaculum aerophilum has been determined to 2.1 A resolution. Although both the fold of the monomer and the architecture of the tetrameric assembly are similar to adenylosuccinate lyase from the thermophilic eubacterium Thermotoga maritima, the archaebacterial lyase contains unique features. Surprisingly, the structure of adenylosuccinate lyase from P. aerophilum reveals that this intracellular protein contains three disulfide bonds that contribute significantly to its stability against thermal and chemical denaturation. The observation of multiple disulfide bonds in the recombinant form of the enzyme suggests the need for further investigations into whether the intracellular environment of P. aerophilum, and possibly other hyperthermophiles, may be compatible with protein disulfide bond formation. In addition, the protein is shorter in P. aerophilum than it is in other organisms. This abbreviation results from an internal excision of a cluster of helices that may be involved in protein-protein interactions in other organisms and may relate to the observed clinical effects of human mutations in that region.</description><subject>adenylosuccinate lyase</subject><subject>Adenylosuccinate Lyase - chemistry</subject><subject>Adenylosuccinate Lyase - isolation & purification</subject><subject>Bacterial Proteins - chemistry</subject><subject>Bacterial Proteins - isolation & purification</subject><subject>Catalytic Domain</subject><subject>Crystallography, X-Ray</subject><subject>disulfide bonds</subject><subject>Disulfides - chemistry</subject><subject>Enzyme Stability</subject><subject>Hot Temperature</subject><subject>Humans</subject><subject>Models, Molecular</subject><subject>Molecular Sequence Data</subject><subject>Mutation</subject><subject>Protein Denaturation</subject><subject>Pyrobaculum aerophilum</subject><subject>Thermoproteaceae - chemistry</subject><issn>0022-2836</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkLlOAzEQhl2ASAi0lMgVXYKPPewSRVxSJChCvbK9s1pH3gMfoH0CXpuNgJpqRprvH336EbqiZEMJKW4PnbYbRgjZcFmSE7QkhLE1E7xYoPMQDvMl55k4QwtKJCtyKpfoa98CNn4KUTkcok8mJg94aLCqoZ_cEJIxtlcRsJtUANz4ocOvkx-0MsmlDivww9ja4-rhA5QLWPXY9tErA84lpzwe_RDB9vjTxhbH1gPg2obkGlsD1kNfhwt02sxRuPydK_T2cL_fPq13L4_P27vdemRcxLUwugFVC6q1rJkRmoMGToQEKHUtSikY5JxCxikvCq7KjEltcqFl3kgjJV-hm5-_s9J7ghCrzoajp-phSKEqKSsIL7J_QVrmuWBFOYPXv2DSHdTV6G2n_FT9dcy_AV-5gMo</recordid><startdate>20000811</startdate><enddate>20000811</enddate><creator>Toth, E A</creator><creator>Worby, C</creator><creator>Dixon, J E</creator><creator>Goedken, E R</creator><creator>Marqusee, S</creator><creator>Yeates, T O</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>7QL</scope><scope>C1K</scope><scope>7X8</scope></search><sort><creationdate>20000811</creationdate><title>The crystal structure of adenylosuccinate lyase from Pyrobaculum aerophilum reveals an intracellular protein with three disulfide bonds</title><author>Toth, E A ; Worby, C ; Dixon, J E ; Goedken, E R ; Marqusee, S ; Yeates, T O</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p238t-8cbfead81bb9d2c8b3ebe3089ee7bd87982e531e4313663a7429bc58b95f9c993</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>adenylosuccinate lyase</topic><topic>Adenylosuccinate Lyase - chemistry</topic><topic>Adenylosuccinate Lyase - isolation & purification</topic><topic>Bacterial Proteins - chemistry</topic><topic>Bacterial Proteins - isolation & purification</topic><topic>Catalytic Domain</topic><topic>Crystallography, X-Ray</topic><topic>disulfide bonds</topic><topic>Disulfides - chemistry</topic><topic>Enzyme Stability</topic><topic>Hot Temperature</topic><topic>Humans</topic><topic>Models, Molecular</topic><topic>Molecular Sequence Data</topic><topic>Mutation</topic><topic>Protein Denaturation</topic><topic>Pyrobaculum aerophilum</topic><topic>Thermoproteaceae - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Toth, E A</creatorcontrib><creatorcontrib>Worby, C</creatorcontrib><creatorcontrib>Dixon, J E</creatorcontrib><creatorcontrib>Goedken, E R</creatorcontrib><creatorcontrib>Marqusee, S</creatorcontrib><creatorcontrib>Yeates, T O</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Environmental Sciences and Pollution Management</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of molecular biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Toth, E A</au><au>Worby, C</au><au>Dixon, J E</au><au>Goedken, E R</au><au>Marqusee, S</au><au>Yeates, T O</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The crystal structure of adenylosuccinate lyase from Pyrobaculum aerophilum reveals an intracellular protein with three disulfide bonds</atitle><jtitle>Journal of molecular biology</jtitle><addtitle>J Mol Biol</addtitle><date>2000-08-11</date><risdate>2000</risdate><volume>301</volume><issue>2</issue><spage>433</spage><epage>450</epage><pages>433-450</pages><issn>0022-2836</issn><abstract>Adenylosuccinate lyase catalyzes two separate reactions in the de novo purine biosynthetic pathway. Through its dual action in this pathway, adenylosuccinate lyase plays an integral part in cellular replication and metabolism. Mutations in the human enzyme can result in severe neurological disorders, including mental retardation with autistic features. The crystal structure of adenylosuccinate lyase from the hyperthermophilic archaebacterium Pyrobaculum aerophilum has been determined to 2.1 A resolution. Although both the fold of the monomer and the architecture of the tetrameric assembly are similar to adenylosuccinate lyase from the thermophilic eubacterium Thermotoga maritima, the archaebacterial lyase contains unique features. Surprisingly, the structure of adenylosuccinate lyase from P. aerophilum reveals that this intracellular protein contains three disulfide bonds that contribute significantly to its stability against thermal and chemical denaturation. The observation of multiple disulfide bonds in the recombinant form of the enzyme suggests the need for further investigations into whether the intracellular environment of P. aerophilum, and possibly other hyperthermophiles, may be compatible with protein disulfide bond formation. In addition, the protein is shorter in P. aerophilum than it is in other organisms. This abbreviation results from an internal excision of a cluster of helices that may be involved in protein-protein interactions in other organisms and may relate to the observed clinical effects of human mutations in that region.</abstract><cop>England</cop><pmid>10926519</pmid><doi>10.1006/jmbi.2000.3970</doi><tpages>18</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-2836 |
ispartof | Journal of molecular biology, 2000-08, Vol.301 (2), p.433-450 |
issn | 0022-2836 |
language | eng |
recordid | cdi_proquest_miscellaneous_71260364 |
source | MEDLINE; ScienceDirect Journals (5 years ago - present) |
subjects | adenylosuccinate lyase Adenylosuccinate Lyase - chemistry Adenylosuccinate Lyase - isolation & purification Bacterial Proteins - chemistry Bacterial Proteins - isolation & purification Catalytic Domain Crystallography, X-Ray disulfide bonds Disulfides - chemistry Enzyme Stability Hot Temperature Humans Models, Molecular Molecular Sequence Data Mutation Protein Denaturation Pyrobaculum aerophilum Thermoproteaceae - chemistry |
title | The crystal structure of adenylosuccinate lyase from Pyrobaculum aerophilum reveals an intracellular protein with three disulfide bonds |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T02%3A14%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20crystal%20structure%20of%20adenylosuccinate%20lyase%20from%20Pyrobaculum%20aerophilum%20reveals%20an%20intracellular%20protein%20with%20three%20disulfide%20bonds&rft.jtitle=Journal%20of%20molecular%20biology&rft.au=Toth,%20E%20A&rft.date=2000-08-11&rft.volume=301&rft.issue=2&rft.spage=433&rft.epage=450&rft.pages=433-450&rft.issn=0022-2836&rft_id=info:doi/10.1006/jmbi.2000.3970&rft_dat=%3Cproquest_pubme%3E17558267%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=17558267&rft_id=info:pmid/10926519&rfr_iscdi=true |