Molecular Cloning and Functional Expression of KCNQ5, a Potassium Channel Subunit That May Contribute to Neuronal M-current Diversity
We have isolated KCNQ5, a novel human member of the KCNQ potassium channel gene family that is differentially expressed in subregions of the brain and in skeletal muscle. When expressed inXenopus oocytes, KCNQ5 generated voltage-dependent, slowly activating K+-selective currents that displayed a mar...
Gespeichert in:
Veröffentlicht in: | The Journal of biological chemistry 2000-07, Vol.275 (29), p.22395-22400 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 22400 |
---|---|
container_issue | 29 |
container_start_page | 22395 |
container_title | The Journal of biological chemistry |
container_volume | 275 |
creator | Lerche, Christian Scherer, Constanze R. Seebohm, Guiscard Derst, Christian Wei, Aguan D. Busch, Andreas E. Steinmeyer, Klaus |
description | We have isolated KCNQ5, a novel human member of the KCNQ potassium channel gene family that is differentially expressed in subregions of the brain and in skeletal muscle. When expressed inXenopus oocytes, KCNQ5 generated voltage-dependent, slowly activating K+-selective currents that displayed a marked inward rectification at positive membrane voltages. KCNQ5 currents were insensitive to the K+ channel blocker tetraethylammonium but were strongly inhibited by the selective M-current blocker linopirdine. Upon coexpression with the structurally related KCNQ3 channel subunit, current amplitudes increased 4–5-fold. Compared with homomeric KCNQ5 currents, KCNQ3/KCNQ5 currents also displayed slower activation kinetics and less inward rectification, indicating that KCNQ5 combined with KCNQ3 to form functional heteromeric channel proteins. This functional interaction between KCNQ5 and KCNQ3, a component of the M-channel, suggests that KCNQ5 may contribute to a diversity of heteromeric channels underlying native neuronal M-currents. |
doi_str_mv | 10.1074/jbc.M002378200 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_71246601</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021925819796793</els_id><sourcerecordid>71246601</sourcerecordid><originalsourceid>FETCH-LOGICAL-c510t-ebdb6e24994af26f3055f014f9aa28549190751c5988fa6e2c3d2efabfa7a6063</originalsourceid><addsrcrecordid>eNqFkUtv1DAUhS0EokNhyxJ5gViRwXbiPJYotAXRKSCKxM5ynOvGVWIPfpTOD-B_Y0gl2CC8sXz0naN7fRB6SsmWkqZ6dT2o7Y4QVjYtI-Qe2lDSlkXJ6df7aJN1WnSMt0foUQjXJJ-qow_RUba2TUXrDfqxczOoNEuP-9lZY6-wtCM-TVZF46yc8cnt3kMI-YGdxu_7i0_8JZb4o4syq2nB_SSthRl_TkOyJuLLSUa8kwfcOxu9GVIEHB2-gOR_B-4KlbwHG_EbcwM-mHh4jB5oOQd4cncfoy-nJ5f92-L8w9m7_vV5oTglsYBhHGpgVddVUrNal4RzTWilOylZy_NuHWk4VbxrWy0zqcqRgZaDlo2sSV0eoxdr7t67bwlCFIsJCuZZWnApiIayqq4J_S9Im7rtKGszuF1B5V0IHrTYe7NIfxCUiF8NidyQ-NNQNjy7S07DAuNf-FpJBp6vwGSupu_GgxiMUxMsgjVcsE4wVnY8Y-2KQf6vGwNeBGXAKhizRUUxOvOvEX4Ca4CrtA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>17689128</pqid></control><display><type>article</type><title>Molecular Cloning and Functional Expression of KCNQ5, a Potassium Channel Subunit That May Contribute to Neuronal M-current Diversity</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><creator>Lerche, Christian ; Scherer, Constanze R. ; Seebohm, Guiscard ; Derst, Christian ; Wei, Aguan D. ; Busch, Andreas E. ; Steinmeyer, Klaus</creator><creatorcontrib>Lerche, Christian ; Scherer, Constanze R. ; Seebohm, Guiscard ; Derst, Christian ; Wei, Aguan D. ; Busch, Andreas E. ; Steinmeyer, Klaus</creatorcontrib><description>We have isolated KCNQ5, a novel human member of the KCNQ potassium channel gene family that is differentially expressed in subregions of the brain and in skeletal muscle. When expressed inXenopus oocytes, KCNQ5 generated voltage-dependent, slowly activating K+-selective currents that displayed a marked inward rectification at positive membrane voltages. KCNQ5 currents were insensitive to the K+ channel blocker tetraethylammonium but were strongly inhibited by the selective M-current blocker linopirdine. Upon coexpression with the structurally related KCNQ3 channel subunit, current amplitudes increased 4–5-fold. Compared with homomeric KCNQ5 currents, KCNQ3/KCNQ5 currents also displayed slower activation kinetics and less inward rectification, indicating that KCNQ5 combined with KCNQ3 to form functional heteromeric channel proteins. This functional interaction between KCNQ5 and KCNQ3, a component of the M-channel, suggests that KCNQ5 may contribute to a diversity of heteromeric channels underlying native neuronal M-currents.</description><identifier>ISSN: 0021-9258</identifier><identifier>EISSN: 1083-351X</identifier><identifier>DOI: 10.1074/jbc.M002378200</identifier><identifier>PMID: 10787416</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Amino Acid Sequence ; Animals ; Cloning, Molecular ; Genetic Variation ; Humans ; Ion Transport ; KCNQ Potassium Channels ; KCNQ5 gene ; Molecular Sequence Data ; Neurons - physiology ; Potassium - metabolism ; Potassium Channels - genetics ; Potassium Channels - metabolism ; Potassium Channels, Voltage-Gated ; Sequence Alignment ; Xenopus</subject><ispartof>The Journal of biological chemistry, 2000-07, Vol.275 (29), p.22395-22400</ispartof><rights>2000 © 2000 ASBMB. Currently published by Elsevier Inc; originally published by American Society for Biochemistry and Molecular Biology.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c510t-ebdb6e24994af26f3055f014f9aa28549190751c5988fa6e2c3d2efabfa7a6063</citedby><cites>FETCH-LOGICAL-c510t-ebdb6e24994af26f3055f014f9aa28549190751c5988fa6e2c3d2efabfa7a6063</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/10787416$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lerche, Christian</creatorcontrib><creatorcontrib>Scherer, Constanze R.</creatorcontrib><creatorcontrib>Seebohm, Guiscard</creatorcontrib><creatorcontrib>Derst, Christian</creatorcontrib><creatorcontrib>Wei, Aguan D.</creatorcontrib><creatorcontrib>Busch, Andreas E.</creatorcontrib><creatorcontrib>Steinmeyer, Klaus</creatorcontrib><title>Molecular Cloning and Functional Expression of KCNQ5, a Potassium Channel Subunit That May Contribute to Neuronal M-current Diversity</title><title>The Journal of biological chemistry</title><addtitle>J Biol Chem</addtitle><description>We have isolated KCNQ5, a novel human member of the KCNQ potassium channel gene family that is differentially expressed in subregions of the brain and in skeletal muscle. When expressed inXenopus oocytes, KCNQ5 generated voltage-dependent, slowly activating K+-selective currents that displayed a marked inward rectification at positive membrane voltages. KCNQ5 currents were insensitive to the K+ channel blocker tetraethylammonium but were strongly inhibited by the selective M-current blocker linopirdine. Upon coexpression with the structurally related KCNQ3 channel subunit, current amplitudes increased 4–5-fold. Compared with homomeric KCNQ5 currents, KCNQ3/KCNQ5 currents also displayed slower activation kinetics and less inward rectification, indicating that KCNQ5 combined with KCNQ3 to form functional heteromeric channel proteins. This functional interaction between KCNQ5 and KCNQ3, a component of the M-channel, suggests that KCNQ5 may contribute to a diversity of heteromeric channels underlying native neuronal M-currents.</description><subject>Amino Acid Sequence</subject><subject>Animals</subject><subject>Cloning, Molecular</subject><subject>Genetic Variation</subject><subject>Humans</subject><subject>Ion Transport</subject><subject>KCNQ Potassium Channels</subject><subject>KCNQ5 gene</subject><subject>Molecular Sequence Data</subject><subject>Neurons - physiology</subject><subject>Potassium - metabolism</subject><subject>Potassium Channels - genetics</subject><subject>Potassium Channels - metabolism</subject><subject>Potassium Channels, Voltage-Gated</subject><subject>Sequence Alignment</subject><subject>Xenopus</subject><issn>0021-9258</issn><issn>1083-351X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkUtv1DAUhS0EokNhyxJ5gViRwXbiPJYotAXRKSCKxM5ynOvGVWIPfpTOD-B_Y0gl2CC8sXz0naN7fRB6SsmWkqZ6dT2o7Y4QVjYtI-Qe2lDSlkXJ6df7aJN1WnSMt0foUQjXJJ-qow_RUba2TUXrDfqxczOoNEuP-9lZY6-wtCM-TVZF46yc8cnt3kMI-YGdxu_7i0_8JZb4o4syq2nB_SSthRl_TkOyJuLLSUa8kwfcOxu9GVIEHB2-gOR_B-4KlbwHG_EbcwM-mHh4jB5oOQd4cncfoy-nJ5f92-L8w9m7_vV5oTglsYBhHGpgVddVUrNal4RzTWilOylZy_NuHWk4VbxrWy0zqcqRgZaDlo2sSV0eoxdr7t67bwlCFIsJCuZZWnApiIayqq4J_S9Im7rtKGszuF1B5V0IHrTYe7NIfxCUiF8NidyQ-NNQNjy7S07DAuNf-FpJBp6vwGSupu_GgxiMUxMsgjVcsE4wVnY8Y-2KQf6vGwNeBGXAKhizRUUxOvOvEX4Ca4CrtA</recordid><startdate>20000721</startdate><enddate>20000721</enddate><creator>Lerche, Christian</creator><creator>Scherer, Constanze R.</creator><creator>Seebohm, Guiscard</creator><creator>Derst, Christian</creator><creator>Wei, Aguan D.</creator><creator>Busch, Andreas E.</creator><creator>Steinmeyer, Klaus</creator><general>Elsevier Inc</general><general>American Society for Biochemistry and Molecular Biology</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TK</scope><scope>7TM</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>20000721</creationdate><title>Molecular Cloning and Functional Expression of KCNQ5, a Potassium Channel Subunit That May Contribute to Neuronal M-current Diversity</title><author>Lerche, Christian ; Scherer, Constanze R. ; Seebohm, Guiscard ; Derst, Christian ; Wei, Aguan D. ; Busch, Andreas E. ; Steinmeyer, Klaus</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c510t-ebdb6e24994af26f3055f014f9aa28549190751c5988fa6e2c3d2efabfa7a6063</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Amino Acid Sequence</topic><topic>Animals</topic><topic>Cloning, Molecular</topic><topic>Genetic Variation</topic><topic>Humans</topic><topic>Ion Transport</topic><topic>KCNQ Potassium Channels</topic><topic>KCNQ5 gene</topic><topic>Molecular Sequence Data</topic><topic>Neurons - physiology</topic><topic>Potassium - metabolism</topic><topic>Potassium Channels - genetics</topic><topic>Potassium Channels - metabolism</topic><topic>Potassium Channels, Voltage-Gated</topic><topic>Sequence Alignment</topic><topic>Xenopus</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lerche, Christian</creatorcontrib><creatorcontrib>Scherer, Constanze R.</creatorcontrib><creatorcontrib>Seebohm, Guiscard</creatorcontrib><creatorcontrib>Derst, Christian</creatorcontrib><creatorcontrib>Wei, Aguan D.</creatorcontrib><creatorcontrib>Busch, Andreas E.</creatorcontrib><creatorcontrib>Steinmeyer, Klaus</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>The Journal of biological chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lerche, Christian</au><au>Scherer, Constanze R.</au><au>Seebohm, Guiscard</au><au>Derst, Christian</au><au>Wei, Aguan D.</au><au>Busch, Andreas E.</au><au>Steinmeyer, Klaus</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Molecular Cloning and Functional Expression of KCNQ5, a Potassium Channel Subunit That May Contribute to Neuronal M-current Diversity</atitle><jtitle>The Journal of biological chemistry</jtitle><addtitle>J Biol Chem</addtitle><date>2000-07-21</date><risdate>2000</risdate><volume>275</volume><issue>29</issue><spage>22395</spage><epage>22400</epage><pages>22395-22400</pages><issn>0021-9258</issn><eissn>1083-351X</eissn><abstract>We have isolated KCNQ5, a novel human member of the KCNQ potassium channel gene family that is differentially expressed in subregions of the brain and in skeletal muscle. When expressed inXenopus oocytes, KCNQ5 generated voltage-dependent, slowly activating K+-selective currents that displayed a marked inward rectification at positive membrane voltages. KCNQ5 currents were insensitive to the K+ channel blocker tetraethylammonium but were strongly inhibited by the selective M-current blocker linopirdine. Upon coexpression with the structurally related KCNQ3 channel subunit, current amplitudes increased 4–5-fold. Compared with homomeric KCNQ5 currents, KCNQ3/KCNQ5 currents also displayed slower activation kinetics and less inward rectification, indicating that KCNQ5 combined with KCNQ3 to form functional heteromeric channel proteins. This functional interaction between KCNQ5 and KCNQ3, a component of the M-channel, suggests that KCNQ5 may contribute to a diversity of heteromeric channels underlying native neuronal M-currents.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>10787416</pmid><doi>10.1074/jbc.M002378200</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9258 |
ispartof | The Journal of biological chemistry, 2000-07, Vol.275 (29), p.22395-22400 |
issn | 0021-9258 1083-351X |
language | eng |
recordid | cdi_proquest_miscellaneous_71246601 |
source | MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection |
subjects | Amino Acid Sequence Animals Cloning, Molecular Genetic Variation Humans Ion Transport KCNQ Potassium Channels KCNQ5 gene Molecular Sequence Data Neurons - physiology Potassium - metabolism Potassium Channels - genetics Potassium Channels - metabolism Potassium Channels, Voltage-Gated Sequence Alignment Xenopus |
title | Molecular Cloning and Functional Expression of KCNQ5, a Potassium Channel Subunit That May Contribute to Neuronal M-current Diversity |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T06%3A14%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Molecular%20Cloning%20and%20Functional%20Expression%20of%20KCNQ5,%20a%20Potassium%20Channel%20Subunit%20That%20May%20Contribute%20to%20Neuronal%20M-current%20Diversity&rft.jtitle=The%20Journal%20of%20biological%20chemistry&rft.au=Lerche,%20Christian&rft.date=2000-07-21&rft.volume=275&rft.issue=29&rft.spage=22395&rft.epage=22400&rft.pages=22395-22400&rft.issn=0021-9258&rft.eissn=1083-351X&rft_id=info:doi/10.1074/jbc.M002378200&rft_dat=%3Cproquest_cross%3E71246601%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=17689128&rft_id=info:pmid/10787416&rft_els_id=S0021925819796793&rfr_iscdi=true |