Interactions of a didomain fragment of the Drosophila sex-lethal protein with single-stranded uridine-rich oligoribonucleotides derived from the transformer and Sex-lethal messenger RNA precursors: NMR with residue-selective [5-2H]uridine substitutions

Proteins that contain two or more copies of the RNA-binding domain [ribonucleoprotein (RNP) domain or RNA recognition motif (RRM)] are considered to be involved in the recognition of single-stranded RNA, but the mechanisms of this recognition are poorly understood at the molecular level. For an NMR...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of biomolecular NMR 2000-06, Vol.17 (2), p.153-165
Hauptverfasser: Kim, I, Muto, Y, Watanabe, S, Kitamura, A, Futamura, Y, Yokoyama, S, Hosono, K, Kawai, G, Takaku, H, Dohmae, N, Takio, K, Saskamoto, H, Shimura, Y
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 165
container_issue 2
container_start_page 153
container_title Journal of biomolecular NMR
container_volume 17
creator Kim, I
Muto, Y
Watanabe, S
Kitamura, A
Futamura, Y
Yokoyama, S
Hosono, K
Kawai, G
Takaku, H
Dohmae, N
Takio, K
Saskamoto, H
Shimura, Y
description Proteins that contain two or more copies of the RNA-binding domain [ribonucleoprotein (RNP) domain or RNA recognition motif (RRM)] are considered to be involved in the recognition of single-stranded RNA, but the mechanisms of this recognition are poorly understood at the molecular level. For an NMR analysis of a single-stranded RNA complexed with a multi-RBD protein, residue-selective stable-isotope labeling techniques are necessary, rather than common assignment methods based on the secondary structure of RNA. In the present study, we analyzed the interaction of a Drosophila Sex-lethal (Sx1) protein fragment, consisting of two RBDs (RBD1-RBD2), with two distinct target RNAs derived from the tra and Sxl mRNA precursors with guanosine and adenosine, respectively, in a position near the 5'-terminus of a uridine stretch. First, we prepared a [5-2H]uridine phosphoramidite, and synthesized a series of 2H-labeled RNAs, in which all of the uridine residues except one were replaced by [5-2H]uridine in the target sequence, GU8C. By observing the H5-H6 TOCSY cross peaks of the series of 2H-labeled RNAs complexed with the Sx1 RBDI-RBD2, all of the base H5-H6 proton resonances of the target RNA were unambiguously assigned. Then, the H5-H6 cross peaks of other target RNAs, GU2GU8, AU8, and UAU8, were assigned by comparison with those of GU8C. We found that the uridine residue prior to the G or A residue is essential for proper interaction with the protein, and that the interaction is tighter for A than for G. Moreover, the H1' resonance assignments were achieved from the H5-H6 assignments. The results revealed that all of the protein-bound nucleotide residues, except for only two, are in the unusual C2'-endo ribose conformation in the complex.
doi_str_mv 10.1023/A:1008357028116
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_71243732</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>71243732</sourcerecordid><originalsourceid>FETCH-LOGICAL-c313t-a73743e31ce04de20054bf4a70eb10077d80bb8c2bfea9d3284662ed891ffda33</originalsourceid><addsrcrecordid>eNp9kctv1DAQhyMEokvhzA1ZHBCXgB9J7PS2Ko9WKkUqcEIocuLJrivH3nrsAv87B9x2ERIHTpY8n-f3cFU9ZfQVo1y8Xh8xSpVoJeWKse5etWKtFHVLKbtfrWjP25pLoQ6qR4iXlNJe8e5hdcDKhEnZr6pfpz5B1FOywSMJM9HEWBMWbT2Zo94s4NPNddoCeRMDht3WOk0QftQO0lY7soshQaG_27QlaP3GQY0pam_AkBytsR7qaKctCc5uQrRj8HlyEJI1gMRAtNeFnGNYblVunuIc4gKRlCXk01-pBRDBb8rg4nxdhGHKEUPEI3L-4eLOQAS0JhcH4KCEugbytVRw8m1vhGAeMdmUb_M-rh7M2iE82Z-H1Zd3bz8fn9RnH9-fHq_P6kkwkWothWwECDYBbQxwSttmnBstKYylfimNouOoJj7OoHsjuGq6joNRPZtno4U4rF7c7S1dXWXANCwWJ3BOewgZB8l4I6TgBXz5X5Bx1dK-EU1b0Of_oJchR19iDKrjou17SQv0bA_lcQEz7KJddPw5_Pl_8RtAM7j6</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>862359970</pqid></control><display><type>article</type><title>Interactions of a didomain fragment of the Drosophila sex-lethal protein with single-stranded uridine-rich oligoribonucleotides derived from the transformer and Sex-lethal messenger RNA precursors: NMR with residue-selective [5-2H]uridine substitutions</title><source>MEDLINE</source><source>Springer Nature - Complete Springer Journals</source><creator>Kim, I ; Muto, Y ; Watanabe, S ; Kitamura, A ; Futamura, Y ; Yokoyama, S ; Hosono, K ; Kawai, G ; Takaku, H ; Dohmae, N ; Takio, K ; Saskamoto, H ; Shimura, Y</creator><creatorcontrib>Kim, I ; Muto, Y ; Watanabe, S ; Kitamura, A ; Futamura, Y ; Yokoyama, S ; Hosono, K ; Kawai, G ; Takaku, H ; Dohmae, N ; Takio, K ; Saskamoto, H ; Shimura, Y</creatorcontrib><description>Proteins that contain two or more copies of the RNA-binding domain [ribonucleoprotein (RNP) domain or RNA recognition motif (RRM)] are considered to be involved in the recognition of single-stranded RNA, but the mechanisms of this recognition are poorly understood at the molecular level. For an NMR analysis of a single-stranded RNA complexed with a multi-RBD protein, residue-selective stable-isotope labeling techniques are necessary, rather than common assignment methods based on the secondary structure of RNA. In the present study, we analyzed the interaction of a Drosophila Sex-lethal (Sx1) protein fragment, consisting of two RBDs (RBD1-RBD2), with two distinct target RNAs derived from the tra and Sxl mRNA precursors with guanosine and adenosine, respectively, in a position near the 5'-terminus of a uridine stretch. First, we prepared a [5-2H]uridine phosphoramidite, and synthesized a series of 2H-labeled RNAs, in which all of the uridine residues except one were replaced by [5-2H]uridine in the target sequence, GU8C. By observing the H5-H6 TOCSY cross peaks of the series of 2H-labeled RNAs complexed with the Sx1 RBDI-RBD2, all of the base H5-H6 proton resonances of the target RNA were unambiguously assigned. Then, the H5-H6 cross peaks of other target RNAs, GU2GU8, AU8, and UAU8, were assigned by comparison with those of GU8C. We found that the uridine residue prior to the G or A residue is essential for proper interaction with the protein, and that the interaction is tighter for A than for G. Moreover, the H1' resonance assignments were achieved from the H5-H6 assignments. The results revealed that all of the protein-bound nucleotide residues, except for only two, are in the unusual C2'-endo ribose conformation in the complex.</description><identifier>ISSN: 0925-2738</identifier><identifier>EISSN: 1573-5001</identifier><identifier>DOI: 10.1023/A:1008357028116</identifier><identifier>PMID: 10921779</identifier><language>eng</language><publisher>Netherlands: Springer Nature B.V</publisher><subject>Adenosine ; Animals ; Deuterium - chemistry ; Deuterium - metabolism ; Drosophila ; Drosophila - genetics ; Drosophila - metabolism ; Drosophila Proteins ; Guanosine ; Insect Hormones - genetics ; Insect Hormones - metabolism ; Insects ; Macromolecular Substances ; mRNA ; N.M.R ; Nuclear Magnetic Resonance, Biomolecular - methods ; Nuclear Proteins - genetics ; Nuclear Proteins - metabolism ; Nucleic Acid Conformation ; Nucleotides ; Oligoribonucleotides - genetics ; Oligoribonucleotides - metabolism ; Peptide Fragments - chemistry ; Peptide Fragments - genetics ; Peptide Fragments - metabolism ; Protein structure ; Protons ; Purine Nucleotides - metabolism ; Residues ; Ribonucleic acid ; Ribonucleoproteins ; Ribose ; RNA ; RNA Precursors - genetics ; RNA Precursors - metabolism ; RNA Processing, Post-Transcriptional ; RNA-Binding Proteins - chemistry ; RNA-Binding Proteins - genetics ; RNA-Binding Proteins - metabolism ; Secondary structure ; Uridine ; Uridine - chemistry ; Uridine - metabolism</subject><ispartof>Journal of biomolecular NMR, 2000-06, Vol.17 (2), p.153-165</ispartof><rights>Kluwer Academic Publishers 2000</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c313t-a73743e31ce04de20054bf4a70eb10077d80bb8c2bfea9d3284662ed891ffda33</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/10921779$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kim, I</creatorcontrib><creatorcontrib>Muto, Y</creatorcontrib><creatorcontrib>Watanabe, S</creatorcontrib><creatorcontrib>Kitamura, A</creatorcontrib><creatorcontrib>Futamura, Y</creatorcontrib><creatorcontrib>Yokoyama, S</creatorcontrib><creatorcontrib>Hosono, K</creatorcontrib><creatorcontrib>Kawai, G</creatorcontrib><creatorcontrib>Takaku, H</creatorcontrib><creatorcontrib>Dohmae, N</creatorcontrib><creatorcontrib>Takio, K</creatorcontrib><creatorcontrib>Saskamoto, H</creatorcontrib><creatorcontrib>Shimura, Y</creatorcontrib><title>Interactions of a didomain fragment of the Drosophila sex-lethal protein with single-stranded uridine-rich oligoribonucleotides derived from the transformer and Sex-lethal messenger RNA precursors: NMR with residue-selective [5-2H]uridine substitutions</title><title>Journal of biomolecular NMR</title><addtitle>J Biomol NMR</addtitle><description>Proteins that contain two or more copies of the RNA-binding domain [ribonucleoprotein (RNP) domain or RNA recognition motif (RRM)] are considered to be involved in the recognition of single-stranded RNA, but the mechanisms of this recognition are poorly understood at the molecular level. For an NMR analysis of a single-stranded RNA complexed with a multi-RBD protein, residue-selective stable-isotope labeling techniques are necessary, rather than common assignment methods based on the secondary structure of RNA. In the present study, we analyzed the interaction of a Drosophila Sex-lethal (Sx1) protein fragment, consisting of two RBDs (RBD1-RBD2), with two distinct target RNAs derived from the tra and Sxl mRNA precursors with guanosine and adenosine, respectively, in a position near the 5'-terminus of a uridine stretch. First, we prepared a [5-2H]uridine phosphoramidite, and synthesized a series of 2H-labeled RNAs, in which all of the uridine residues except one were replaced by [5-2H]uridine in the target sequence, GU8C. By observing the H5-H6 TOCSY cross peaks of the series of 2H-labeled RNAs complexed with the Sx1 RBDI-RBD2, all of the base H5-H6 proton resonances of the target RNA were unambiguously assigned. Then, the H5-H6 cross peaks of other target RNAs, GU2GU8, AU8, and UAU8, were assigned by comparison with those of GU8C. We found that the uridine residue prior to the G or A residue is essential for proper interaction with the protein, and that the interaction is tighter for A than for G. Moreover, the H1' resonance assignments were achieved from the H5-H6 assignments. The results revealed that all of the protein-bound nucleotide residues, except for only two, are in the unusual C2'-endo ribose conformation in the complex.</description><subject>Adenosine</subject><subject>Animals</subject><subject>Deuterium - chemistry</subject><subject>Deuterium - metabolism</subject><subject>Drosophila</subject><subject>Drosophila - genetics</subject><subject>Drosophila - metabolism</subject><subject>Drosophila Proteins</subject><subject>Guanosine</subject><subject>Insect Hormones - genetics</subject><subject>Insect Hormones - metabolism</subject><subject>Insects</subject><subject>Macromolecular Substances</subject><subject>mRNA</subject><subject>N.M.R</subject><subject>Nuclear Magnetic Resonance, Biomolecular - methods</subject><subject>Nuclear Proteins - genetics</subject><subject>Nuclear Proteins - metabolism</subject><subject>Nucleic Acid Conformation</subject><subject>Nucleotides</subject><subject>Oligoribonucleotides - genetics</subject><subject>Oligoribonucleotides - metabolism</subject><subject>Peptide Fragments - chemistry</subject><subject>Peptide Fragments - genetics</subject><subject>Peptide Fragments - metabolism</subject><subject>Protein structure</subject><subject>Protons</subject><subject>Purine Nucleotides - metabolism</subject><subject>Residues</subject><subject>Ribonucleic acid</subject><subject>Ribonucleoproteins</subject><subject>Ribose</subject><subject>RNA</subject><subject>RNA Precursors - genetics</subject><subject>RNA Precursors - metabolism</subject><subject>RNA Processing, Post-Transcriptional</subject><subject>RNA-Binding Proteins - chemistry</subject><subject>RNA-Binding Proteins - genetics</subject><subject>RNA-Binding Proteins - metabolism</subject><subject>Secondary structure</subject><subject>Uridine</subject><subject>Uridine - chemistry</subject><subject>Uridine - metabolism</subject><issn>0925-2738</issn><issn>1573-5001</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNp9kctv1DAQhyMEokvhzA1ZHBCXgB9J7PS2Ko9WKkUqcEIocuLJrivH3nrsAv87B9x2ERIHTpY8n-f3cFU9ZfQVo1y8Xh8xSpVoJeWKse5etWKtFHVLKbtfrWjP25pLoQ6qR4iXlNJe8e5hdcDKhEnZr6pfpz5B1FOywSMJM9HEWBMWbT2Zo94s4NPNddoCeRMDht3WOk0QftQO0lY7soshQaG_27QlaP3GQY0pam_AkBytsR7qaKctCc5uQrRj8HlyEJI1gMRAtNeFnGNYblVunuIc4gKRlCXk01-pBRDBb8rg4nxdhGHKEUPEI3L-4eLOQAS0JhcH4KCEugbytVRw8m1vhGAeMdmUb_M-rh7M2iE82Z-H1Zd3bz8fn9RnH9-fHq_P6kkwkWothWwECDYBbQxwSttmnBstKYylfimNouOoJj7OoHsjuGq6joNRPZtno4U4rF7c7S1dXWXANCwWJ3BOewgZB8l4I6TgBXz5X5Bx1dK-EU1b0Of_oJchR19iDKrjou17SQv0bA_lcQEz7KJddPw5_Pl_8RtAM7j6</recordid><startdate>20000601</startdate><enddate>20000601</enddate><creator>Kim, I</creator><creator>Muto, Y</creator><creator>Watanabe, S</creator><creator>Kitamura, A</creator><creator>Futamura, Y</creator><creator>Yokoyama, S</creator><creator>Hosono, K</creator><creator>Kawai, G</creator><creator>Takaku, H</creator><creator>Dohmae, N</creator><creator>Takio, K</creator><creator>Saskamoto, H</creator><creator>Shimura, Y</creator><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>3V.</scope><scope>7QL</scope><scope>7QO</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope></search><sort><creationdate>20000601</creationdate><title>Interactions of a didomain fragment of the Drosophila sex-lethal protein with single-stranded uridine-rich oligoribonucleotides derived from the transformer and Sex-lethal messenger RNA precursors: NMR with residue-selective [5-2H]uridine substitutions</title><author>Kim, I ; Muto, Y ; Watanabe, S ; Kitamura, A ; Futamura, Y ; Yokoyama, S ; Hosono, K ; Kawai, G ; Takaku, H ; Dohmae, N ; Takio, K ; Saskamoto, H ; Shimura, Y</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c313t-a73743e31ce04de20054bf4a70eb10077d80bb8c2bfea9d3284662ed891ffda33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Adenosine</topic><topic>Animals</topic><topic>Deuterium - chemistry</topic><topic>Deuterium - metabolism</topic><topic>Drosophila</topic><topic>Drosophila - genetics</topic><topic>Drosophila - metabolism</topic><topic>Drosophila Proteins</topic><topic>Guanosine</topic><topic>Insect Hormones - genetics</topic><topic>Insect Hormones - metabolism</topic><topic>Insects</topic><topic>Macromolecular Substances</topic><topic>mRNA</topic><topic>N.M.R</topic><topic>Nuclear Magnetic Resonance, Biomolecular - methods</topic><topic>Nuclear Proteins - genetics</topic><topic>Nuclear Proteins - metabolism</topic><topic>Nucleic Acid Conformation</topic><topic>Nucleotides</topic><topic>Oligoribonucleotides - genetics</topic><topic>Oligoribonucleotides - metabolism</topic><topic>Peptide Fragments - chemistry</topic><topic>Peptide Fragments - genetics</topic><topic>Peptide Fragments - metabolism</topic><topic>Protein structure</topic><topic>Protons</topic><topic>Purine Nucleotides - metabolism</topic><topic>Residues</topic><topic>Ribonucleic acid</topic><topic>Ribonucleoproteins</topic><topic>Ribose</topic><topic>RNA</topic><topic>RNA Precursors - genetics</topic><topic>RNA Precursors - metabolism</topic><topic>RNA Processing, Post-Transcriptional</topic><topic>RNA-Binding Proteins - chemistry</topic><topic>RNA-Binding Proteins - genetics</topic><topic>RNA-Binding Proteins - metabolism</topic><topic>Secondary structure</topic><topic>Uridine</topic><topic>Uridine - chemistry</topic><topic>Uridine - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, I</creatorcontrib><creatorcontrib>Muto, Y</creatorcontrib><creatorcontrib>Watanabe, S</creatorcontrib><creatorcontrib>Kitamura, A</creatorcontrib><creatorcontrib>Futamura, Y</creatorcontrib><creatorcontrib>Yokoyama, S</creatorcontrib><creatorcontrib>Hosono, K</creatorcontrib><creatorcontrib>Kawai, G</creatorcontrib><creatorcontrib>Takaku, H</creatorcontrib><creatorcontrib>Dohmae, N</creatorcontrib><creatorcontrib>Takio, K</creatorcontrib><creatorcontrib>Saskamoto, H</creatorcontrib><creatorcontrib>Shimura, Y</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of biomolecular NMR</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, I</au><au>Muto, Y</au><au>Watanabe, S</au><au>Kitamura, A</au><au>Futamura, Y</au><au>Yokoyama, S</au><au>Hosono, K</au><au>Kawai, G</au><au>Takaku, H</au><au>Dohmae, N</au><au>Takio, K</au><au>Saskamoto, H</au><au>Shimura, Y</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Interactions of a didomain fragment of the Drosophila sex-lethal protein with single-stranded uridine-rich oligoribonucleotides derived from the transformer and Sex-lethal messenger RNA precursors: NMR with residue-selective [5-2H]uridine substitutions</atitle><jtitle>Journal of biomolecular NMR</jtitle><addtitle>J Biomol NMR</addtitle><date>2000-06-01</date><risdate>2000</risdate><volume>17</volume><issue>2</issue><spage>153</spage><epage>165</epage><pages>153-165</pages><issn>0925-2738</issn><eissn>1573-5001</eissn><abstract>Proteins that contain two or more copies of the RNA-binding domain [ribonucleoprotein (RNP) domain or RNA recognition motif (RRM)] are considered to be involved in the recognition of single-stranded RNA, but the mechanisms of this recognition are poorly understood at the molecular level. For an NMR analysis of a single-stranded RNA complexed with a multi-RBD protein, residue-selective stable-isotope labeling techniques are necessary, rather than common assignment methods based on the secondary structure of RNA. In the present study, we analyzed the interaction of a Drosophila Sex-lethal (Sx1) protein fragment, consisting of two RBDs (RBD1-RBD2), with two distinct target RNAs derived from the tra and Sxl mRNA precursors with guanosine and adenosine, respectively, in a position near the 5'-terminus of a uridine stretch. First, we prepared a [5-2H]uridine phosphoramidite, and synthesized a series of 2H-labeled RNAs, in which all of the uridine residues except one were replaced by [5-2H]uridine in the target sequence, GU8C. By observing the H5-H6 TOCSY cross peaks of the series of 2H-labeled RNAs complexed with the Sx1 RBDI-RBD2, all of the base H5-H6 proton resonances of the target RNA were unambiguously assigned. Then, the H5-H6 cross peaks of other target RNAs, GU2GU8, AU8, and UAU8, were assigned by comparison with those of GU8C. We found that the uridine residue prior to the G or A residue is essential for proper interaction with the protein, and that the interaction is tighter for A than for G. Moreover, the H1' resonance assignments were achieved from the H5-H6 assignments. The results revealed that all of the protein-bound nucleotide residues, except for only two, are in the unusual C2'-endo ribose conformation in the complex.</abstract><cop>Netherlands</cop><pub>Springer Nature B.V</pub><pmid>10921779</pmid><doi>10.1023/A:1008357028116</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0925-2738
ispartof Journal of biomolecular NMR, 2000-06, Vol.17 (2), p.153-165
issn 0925-2738
1573-5001
language eng
recordid cdi_proquest_miscellaneous_71243732
source MEDLINE; Springer Nature - Complete Springer Journals
subjects Adenosine
Animals
Deuterium - chemistry
Deuterium - metabolism
Drosophila
Drosophila - genetics
Drosophila - metabolism
Drosophila Proteins
Guanosine
Insect Hormones - genetics
Insect Hormones - metabolism
Insects
Macromolecular Substances
mRNA
N.M.R
Nuclear Magnetic Resonance, Biomolecular - methods
Nuclear Proteins - genetics
Nuclear Proteins - metabolism
Nucleic Acid Conformation
Nucleotides
Oligoribonucleotides - genetics
Oligoribonucleotides - metabolism
Peptide Fragments - chemistry
Peptide Fragments - genetics
Peptide Fragments - metabolism
Protein structure
Protons
Purine Nucleotides - metabolism
Residues
Ribonucleic acid
Ribonucleoproteins
Ribose
RNA
RNA Precursors - genetics
RNA Precursors - metabolism
RNA Processing, Post-Transcriptional
RNA-Binding Proteins - chemistry
RNA-Binding Proteins - genetics
RNA-Binding Proteins - metabolism
Secondary structure
Uridine
Uridine - chemistry
Uridine - metabolism
title Interactions of a didomain fragment of the Drosophila sex-lethal protein with single-stranded uridine-rich oligoribonucleotides derived from the transformer and Sex-lethal messenger RNA precursors: NMR with residue-selective [5-2H]uridine substitutions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T04%3A27%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Interactions%20of%20a%20didomain%20fragment%20of%20the%20Drosophila%20sex-lethal%20protein%20with%20single-stranded%20uridine-rich%20oligoribonucleotides%20derived%20from%20the%20transformer%20and%20Sex-lethal%20messenger%20RNA%20precursors:%20NMR%20with%20residue-selective%20%5B5-2H%5Duridine%20substitutions&rft.jtitle=Journal%20of%20biomolecular%20NMR&rft.au=Kim,%20I&rft.date=2000-06-01&rft.volume=17&rft.issue=2&rft.spage=153&rft.epage=165&rft.pages=153-165&rft.issn=0925-2738&rft.eissn=1573-5001&rft_id=info:doi/10.1023/A:1008357028116&rft_dat=%3Cproquest_pubme%3E71243732%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=862359970&rft_id=info:pmid/10921779&rfr_iscdi=true