Insulin-Like Growth Factor-I Promotes Myelination of Peripheral Sensory Axons

Insulin-like growth factor-I (IGF-I) in vivo or in the presence of other permissive factors can promote myelination in the central nervous system. In the current study, we examine the role of IGF-I in the myelination of peripheral nerves. In rat cocultures of dorsal root ganglia (DRG) and Schwann ce...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of neuropathology and experimental neurology 2000-07, Vol.59 (7), p.575-584
Hauptverfasser: RUSSELL, JAMES W, CHENG, HSIN-LIN, GOLOVOY, DAVID
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 584
container_issue 7
container_start_page 575
container_title Journal of neuropathology and experimental neurology
container_volume 59
creator RUSSELL, JAMES W
CHENG, HSIN-LIN
GOLOVOY, DAVID
description Insulin-like growth factor-I (IGF-I) in vivo or in the presence of other permissive factors can promote myelination in the central nervous system. In the current study, we examine the role of IGF-I in the myelination of peripheral nerves. In rat cocultures of dorsal root ganglia (DRG) and Schwann cells (SC) grown in serum- and insulin-free defined medium, IGF-I induces a dose dependent upregulation in myelin proteins such as P0, corresponding to maximal SC ensheathment. Furthermore, IGF-I is essential in promoting a dose-dependent, long-term myelination of DRG sensory axons. In the absence of IGF-I, axons and SC survive, but fail to myelinate. In the presence of 10 nM IGF-I, 59% of axons are myelinated at 21 days, whereas in the absence of IGF-I myelination fails to occur. Maximum SC ensheathment occurs 48 hours after addition of IGF-I. If IGF-I is withdrawn at 48 hours, axon segregation by SC persists, however, most axons and SC do not exhibit a one-to-one relationship and little myelination is observed. IGF-I is important in myelination and is critical not only for initial SC ensheathment of the axon and upregulation of myelin proteins, but also for sustained myelination. Furthermore, IGF-I associated axonal size is not the sole determinant for myelination.
doi_str_mv 10.1093/jnen/59.7.575
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_71243364</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A536177034</galeid><sourcerecordid>A536177034</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5262-b7fbb297fe3ec4d46de99f1803969e9d3ccd1b1b35c1e4f785180e221190b34e3</originalsourceid><addsrcrecordid>eNqF0s2L1DAUAPAiijuuHr1KEfHW2XynOQ6Luw7M4oJ6Dmn66nQ2TcakZZz_3pQOKF4khDyS38sHL0XxFqM1RoreHDz4G67Wcs0lf1asMOesElzWz4sVQoRUFAl1VbxK6YAQUkixl8VVzkSYkHpVPGx9mlzvq13_BOV9DKdxX94ZO4ZYbcvHGIYwQiofzpCRGfvgy9CVjxD74x6iceVX8CnEc7n5FXx6XbzojEvw5jJeF9_vPn27_Vztvtxvbze7ynIiSNXIrmmIkh1QsKxlogWlOlwjqoQC1VJrW9zghnKLgXWy5nkNCMFYoYYyoNfFx2XfYww_J0ijHvpkwTnjIUxJS0wYpYL9F2LFsBRSZfj-H3gIU_T5EZoQJWrJ6zqj9YJ-GAe6910Yo7G5tTD0Nnjo-jy_4VRgKRGdj6-WBBtDShE6fYz9YOJZY6Tn8um5fJorLXUuX_bvLreYmgHav_RSrww-XIBJ1rguGm_79McxqqQQmbGFnYIbIaYnN50g6j0YN-51_geII0kqMkcy92oOCP0Nbxew1g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>229687588</pqid></control><display><type>article</type><title>Insulin-Like Growth Factor-I Promotes Myelination of Peripheral Sensory Axons</title><source>Oxford University Press Journals All Titles (1996-Current)</source><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Journals@Ovid Complete</source><creator>RUSSELL, JAMES W ; CHENG, HSIN-LIN ; GOLOVOY, DAVID</creator><creatorcontrib>RUSSELL, JAMES W ; CHENG, HSIN-LIN ; GOLOVOY, DAVID</creatorcontrib><description>Insulin-like growth factor-I (IGF-I) in vivo or in the presence of other permissive factors can promote myelination in the central nervous system. In the current study, we examine the role of IGF-I in the myelination of peripheral nerves. In rat cocultures of dorsal root ganglia (DRG) and Schwann cells (SC) grown in serum- and insulin-free defined medium, IGF-I induces a dose dependent upregulation in myelin proteins such as P0, corresponding to maximal SC ensheathment. Furthermore, IGF-I is essential in promoting a dose-dependent, long-term myelination of DRG sensory axons. In the absence of IGF-I, axons and SC survive, but fail to myelinate. In the presence of 10 nM IGF-I, 59% of axons are myelinated at 21 days, whereas in the absence of IGF-I myelination fails to occur. Maximum SC ensheathment occurs 48 hours after addition of IGF-I. If IGF-I is withdrawn at 48 hours, axon segregation by SC persists, however, most axons and SC do not exhibit a one-to-one relationship and little myelination is observed. IGF-I is important in myelination and is critical not only for initial SC ensheathment of the axon and upregulation of myelin proteins, but also for sustained myelination. Furthermore, IGF-I associated axonal size is not the sole determinant for myelination.</description><identifier>ISSN: 0022-3069</identifier><identifier>EISSN: 1554-6578</identifier><identifier>DOI: 10.1093/jnen/59.7.575</identifier><identifier>PMID: 10901228</identifier><identifier>CODEN: JNENAD</identifier><language>eng</language><publisher>Hagerstown, MD: American Association of Neuropathologists, Inc</publisher><subject>Animals ; Biological and medical sciences ; Cells, Cultured ; Fetus - cytology ; Fundamental and applied biological sciences. Psychology ; Ganglia, Spinal - cytology ; Ganglia, Spinal - embryology ; Insulin-Like Growth Factor I - pharmacology ; Microscopy, Electron ; Myelin P0 Protein - biosynthesis ; Myelin proteins ; Myelin Sheath - drug effects ; Nerve Fibers, Myelinated - drug effects ; Nerve Fibers, Myelinated - metabolism ; Neurons, Afferent - drug effects ; Neurons, Afferent - physiology ; Neurons, Afferent - ultrastructure ; Peripheral nervous system. Autonomic nervous system. Neuromuscular transmission. Ganglionic transmission. Electric organ ; Rats ; Rats, Sprague-Dawley ; Schwann Cells - drug effects ; Schwann Cells - physiology ; Schwann Cells - ultrastructure ; Vertebrates: nervous system and sense organs</subject><ispartof>Journal of neuropathology and experimental neurology, 2000-07, Vol.59 (7), p.575-584</ispartof><rights>2000 American Association of Neuropathologists, Inc</rights><rights>2000 INIST-CNRS</rights><rights>COPYRIGHT 2000 Oxford University Press</rights><rights>Copyright American Association of Neuropathologists, Inc. Jul 2000</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5262-b7fbb297fe3ec4d46de99f1803969e9d3ccd1b1b35c1e4f785180e221190b34e3</citedby><cites>FETCH-LOGICAL-c5262-b7fbb297fe3ec4d46de99f1803969e9d3ccd1b1b35c1e4f785180e221190b34e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=1439766$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/10901228$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>RUSSELL, JAMES W</creatorcontrib><creatorcontrib>CHENG, HSIN-LIN</creatorcontrib><creatorcontrib>GOLOVOY, DAVID</creatorcontrib><title>Insulin-Like Growth Factor-I Promotes Myelination of Peripheral Sensory Axons</title><title>Journal of neuropathology and experimental neurology</title><addtitle>J Neuropathol Exp Neurol</addtitle><description>Insulin-like growth factor-I (IGF-I) in vivo or in the presence of other permissive factors can promote myelination in the central nervous system. In the current study, we examine the role of IGF-I in the myelination of peripheral nerves. In rat cocultures of dorsal root ganglia (DRG) and Schwann cells (SC) grown in serum- and insulin-free defined medium, IGF-I induces a dose dependent upregulation in myelin proteins such as P0, corresponding to maximal SC ensheathment. Furthermore, IGF-I is essential in promoting a dose-dependent, long-term myelination of DRG sensory axons. In the absence of IGF-I, axons and SC survive, but fail to myelinate. In the presence of 10 nM IGF-I, 59% of axons are myelinated at 21 days, whereas in the absence of IGF-I myelination fails to occur. Maximum SC ensheathment occurs 48 hours after addition of IGF-I. If IGF-I is withdrawn at 48 hours, axon segregation by SC persists, however, most axons and SC do not exhibit a one-to-one relationship and little myelination is observed. IGF-I is important in myelination and is critical not only for initial SC ensheathment of the axon and upregulation of myelin proteins, but also for sustained myelination. Furthermore, IGF-I associated axonal size is not the sole determinant for myelination.</description><subject>Animals</subject><subject>Biological and medical sciences</subject><subject>Cells, Cultured</subject><subject>Fetus - cytology</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Ganglia, Spinal - cytology</subject><subject>Ganglia, Spinal - embryology</subject><subject>Insulin-Like Growth Factor I - pharmacology</subject><subject>Microscopy, Electron</subject><subject>Myelin P0 Protein - biosynthesis</subject><subject>Myelin proteins</subject><subject>Myelin Sheath - drug effects</subject><subject>Nerve Fibers, Myelinated - drug effects</subject><subject>Nerve Fibers, Myelinated - metabolism</subject><subject>Neurons, Afferent - drug effects</subject><subject>Neurons, Afferent - physiology</subject><subject>Neurons, Afferent - ultrastructure</subject><subject>Peripheral nervous system. Autonomic nervous system. Neuromuscular transmission. Ganglionic transmission. Electric organ</subject><subject>Rats</subject><subject>Rats, Sprague-Dawley</subject><subject>Schwann Cells - drug effects</subject><subject>Schwann Cells - physiology</subject><subject>Schwann Cells - ultrastructure</subject><subject>Vertebrates: nervous system and sense organs</subject><issn>0022-3069</issn><issn>1554-6578</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNqF0s2L1DAUAPAiijuuHr1KEfHW2XynOQ6Luw7M4oJ6Dmn66nQ2TcakZZz_3pQOKF4khDyS38sHL0XxFqM1RoreHDz4G67Wcs0lf1asMOesElzWz4sVQoRUFAl1VbxK6YAQUkixl8VVzkSYkHpVPGx9mlzvq13_BOV9DKdxX94ZO4ZYbcvHGIYwQiofzpCRGfvgy9CVjxD74x6iceVX8CnEc7n5FXx6XbzojEvw5jJeF9_vPn27_Vztvtxvbze7ynIiSNXIrmmIkh1QsKxlogWlOlwjqoQC1VJrW9zghnKLgXWy5nkNCMFYoYYyoNfFx2XfYww_J0ijHvpkwTnjIUxJS0wYpYL9F2LFsBRSZfj-H3gIU_T5EZoQJWrJ6zqj9YJ-GAe6910Yo7G5tTD0Nnjo-jy_4VRgKRGdj6-WBBtDShE6fYz9YOJZY6Tn8um5fJorLXUuX_bvLreYmgHav_RSrww-XIBJ1rguGm_79McxqqQQmbGFnYIbIaYnN50g6j0YN-51_geII0kqMkcy92oOCP0Nbxew1g</recordid><startdate>200007</startdate><enddate>200007</enddate><creator>RUSSELL, JAMES W</creator><creator>CHENG, HSIN-LIN</creator><creator>GOLOVOY, DAVID</creator><general>American Association of Neuropathologists, Inc</general><general>Lippincott Williams &amp; Wilkins</general><general>Oxford University Press</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88G</scope><scope>88I</scope><scope>8AF</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>S0X</scope><scope>7TK</scope><scope>7X8</scope></search><sort><creationdate>200007</creationdate><title>Insulin-Like Growth Factor-I Promotes Myelination of Peripheral Sensory Axons</title><author>RUSSELL, JAMES W ; CHENG, HSIN-LIN ; GOLOVOY, DAVID</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5262-b7fbb297fe3ec4d46de99f1803969e9d3ccd1b1b35c1e4f785180e221190b34e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Animals</topic><topic>Biological and medical sciences</topic><topic>Cells, Cultured</topic><topic>Fetus - cytology</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Ganglia, Spinal - cytology</topic><topic>Ganglia, Spinal - embryology</topic><topic>Insulin-Like Growth Factor I - pharmacology</topic><topic>Microscopy, Electron</topic><topic>Myelin P0 Protein - biosynthesis</topic><topic>Myelin proteins</topic><topic>Myelin Sheath - drug effects</topic><topic>Nerve Fibers, Myelinated - drug effects</topic><topic>Nerve Fibers, Myelinated - metabolism</topic><topic>Neurons, Afferent - drug effects</topic><topic>Neurons, Afferent - physiology</topic><topic>Neurons, Afferent - ultrastructure</topic><topic>Peripheral nervous system. Autonomic nervous system. Neuromuscular transmission. Ganglionic transmission. Electric organ</topic><topic>Rats</topic><topic>Rats, Sprague-Dawley</topic><topic>Schwann Cells - drug effects</topic><topic>Schwann Cells - physiology</topic><topic>Schwann Cells - ultrastructure</topic><topic>Vertebrates: nervous system and sense organs</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>RUSSELL, JAMES W</creatorcontrib><creatorcontrib>CHENG, HSIN-LIN</creatorcontrib><creatorcontrib>GOLOVOY, DAVID</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><collection>Neurosciences Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of neuropathology and experimental neurology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>RUSSELL, JAMES W</au><au>CHENG, HSIN-LIN</au><au>GOLOVOY, DAVID</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Insulin-Like Growth Factor-I Promotes Myelination of Peripheral Sensory Axons</atitle><jtitle>Journal of neuropathology and experimental neurology</jtitle><addtitle>J Neuropathol Exp Neurol</addtitle><date>2000-07</date><risdate>2000</risdate><volume>59</volume><issue>7</issue><spage>575</spage><epage>584</epage><pages>575-584</pages><issn>0022-3069</issn><eissn>1554-6578</eissn><coden>JNENAD</coden><abstract>Insulin-like growth factor-I (IGF-I) in vivo or in the presence of other permissive factors can promote myelination in the central nervous system. In the current study, we examine the role of IGF-I in the myelination of peripheral nerves. In rat cocultures of dorsal root ganglia (DRG) and Schwann cells (SC) grown in serum- and insulin-free defined medium, IGF-I induces a dose dependent upregulation in myelin proteins such as P0, corresponding to maximal SC ensheathment. Furthermore, IGF-I is essential in promoting a dose-dependent, long-term myelination of DRG sensory axons. In the absence of IGF-I, axons and SC survive, but fail to myelinate. In the presence of 10 nM IGF-I, 59% of axons are myelinated at 21 days, whereas in the absence of IGF-I myelination fails to occur. Maximum SC ensheathment occurs 48 hours after addition of IGF-I. If IGF-I is withdrawn at 48 hours, axon segregation by SC persists, however, most axons and SC do not exhibit a one-to-one relationship and little myelination is observed. IGF-I is important in myelination and is critical not only for initial SC ensheathment of the axon and upregulation of myelin proteins, but also for sustained myelination. Furthermore, IGF-I associated axonal size is not the sole determinant for myelination.</abstract><cop>Hagerstown, MD</cop><pub>American Association of Neuropathologists, Inc</pub><pmid>10901228</pmid><doi>10.1093/jnen/59.7.575</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0022-3069
ispartof Journal of neuropathology and experimental neurology, 2000-07, Vol.59 (7), p.575-584
issn 0022-3069
1554-6578
language eng
recordid cdi_proquest_miscellaneous_71243364
source Oxford University Press Journals All Titles (1996-Current); MEDLINE; EZB-FREE-00999 freely available EZB journals; Journals@Ovid Complete
subjects Animals
Biological and medical sciences
Cells, Cultured
Fetus - cytology
Fundamental and applied biological sciences. Psychology
Ganglia, Spinal - cytology
Ganglia, Spinal - embryology
Insulin-Like Growth Factor I - pharmacology
Microscopy, Electron
Myelin P0 Protein - biosynthesis
Myelin proteins
Myelin Sheath - drug effects
Nerve Fibers, Myelinated - drug effects
Nerve Fibers, Myelinated - metabolism
Neurons, Afferent - drug effects
Neurons, Afferent - physiology
Neurons, Afferent - ultrastructure
Peripheral nervous system. Autonomic nervous system. Neuromuscular transmission. Ganglionic transmission. Electric organ
Rats
Rats, Sprague-Dawley
Schwann Cells - drug effects
Schwann Cells - physiology
Schwann Cells - ultrastructure
Vertebrates: nervous system and sense organs
title Insulin-Like Growth Factor-I Promotes Myelination of Peripheral Sensory Axons
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T16%3A48%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Insulin-Like%20Growth%20Factor-I%20Promotes%20Myelination%20of%20Peripheral%20Sensory%20Axons&rft.jtitle=Journal%20of%20neuropathology%20and%20experimental%20neurology&rft.au=RUSSELL,%20JAMES%20W&rft.date=2000-07&rft.volume=59&rft.issue=7&rft.spage=575&rft.epage=584&rft.pages=575-584&rft.issn=0022-3069&rft.eissn=1554-6578&rft.coden=JNENAD&rft_id=info:doi/10.1093/jnen/59.7.575&rft_dat=%3Cgale_proqu%3EA536177034%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=229687588&rft_id=info:pmid/10901228&rft_galeid=A536177034&rfr_iscdi=true