Uptake and incorporation of docosahexaenoic acid (DHA) into neuronal cell body and neurite/nerve growth cone lipids : Evidence of compartmental DHA metabolism in nerve growth factor-differentiated PC12 cells
Docosahexaenoic acid (DHA) accumulates in nerve endings of the brain during development. It is released from the membrane during ischemia and electroconvulsive shock. DHA optimizes neurologic development, it is neuroprotective, and rat adrenopheochromocytoma (PC12) cells have decreased PLA2 activity...
Gespeichert in:
Veröffentlicht in: | Neurochemical research 2000-05, Vol.25 (5), p.715-723 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 723 |
---|---|
container_issue | 5 |
container_start_page | 715 |
container_title | Neurochemical research |
container_volume | 25 |
creator | MARTIN, R. E WICKHAM, J. Q OM, A.-S SANDERS, J CEBALLOS, N |
description | Docosahexaenoic acid (DHA) accumulates in nerve endings of the brain during development. It is released from the membrane during ischemia and electroconvulsive shock. DHA optimizes neurologic development, it is neuroprotective, and rat adrenopheochromocytoma (PC12) cells have decreased PLA2 activity when DHA is present. To characterize DHA metabolism in PC12 cells, media were supplemented with [3H]DHA or [3H]glycerol. Fractions of nerve growth cone particles (NGC) and cell bodies were prepared and the metabolism of the radiolabeled substrates was determined by thin-layer chromatography. [3H]glycerol incorporation into phospholipids indicated de novo lipid synthesis. [3H]DHA uptake was more rapid in the cell bodies than in the NGC. [3H]DHA first esterified in neutral lipids and later in phospholipids (phosphatidylethanolamine). [3H]glycerol primarily labeled phosphatidylcholine. DHA uptake was compartmentalized between the cell body and the NGC. With metabolism similar to that seen in vivo, PC12 cells are an appropriate model to study DHA in neurons. |
doi_str_mv | 10.1023/A:1007575406896 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_71232435</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>390357621</sourcerecordid><originalsourceid>FETCH-LOGICAL-c340t-eed4cf29f7b696fb4e49a6f03be8ddb78aaee41964f7df3a11330ddaf414ff823</originalsourceid><addsrcrecordid>eNqF0U1vFSEUgGFiNPa2unZniDFGF2NhYD7o7ua2WpMmurDryRk4WOoMTIGp9lf6l5yp1xjduCIhD-8hQMgzzt5yVorj7QlnrKmaSrK6VfUDsuFVI4paMfGQbJioZSG4YgfkMKVrxhZc8sfkgDPFqlrIDflxOWX4ihS8oc7rEKcQIbvgabDUBB0SXOF3QB-cpqCdoa9Pz7dvFpsD9TjH4GGgGoeB9sHc3XfWbZfx2GO8Rfolhm_5iurgkQ5ucibRE3p26wx6jesUHcYJYh7R5yW11OmIGfowuDQuc-hfGQs6h1gYZy3G5YSDjIZ-2vHy_hLpCXlkYUj4dL8ekct3Z59358XFx_cfdtuLQgvJcoFopLalsk1fq9r2EqWC2jLRY2tM37QAiJKrWtrGWAGcC8GMASu5tLYtxRF59as7xXAzY8rd6NJ6A_AY5tQ1vBSlFNV_IW8qpZhciy_-gddhjsvrpq4sVyVataDnezT3I5puim6EeNf9_tAFvNwDSBoGG8Frl_44WQkmW_ET8-Wyrw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>221759389</pqid></control><display><type>article</type><title>Uptake and incorporation of docosahexaenoic acid (DHA) into neuronal cell body and neurite/nerve growth cone lipids : Evidence of compartmental DHA metabolism in nerve growth factor-differentiated PC12 cells</title><source>MEDLINE</source><source>SpringerLink Journals - AutoHoldings</source><creator>MARTIN, R. E ; WICKHAM, J. Q ; OM, A.-S ; SANDERS, J ; CEBALLOS, N</creator><creatorcontrib>MARTIN, R. E ; WICKHAM, J. Q ; OM, A.-S ; SANDERS, J ; CEBALLOS, N</creatorcontrib><description>Docosahexaenoic acid (DHA) accumulates in nerve endings of the brain during development. It is released from the membrane during ischemia and electroconvulsive shock. DHA optimizes neurologic development, it is neuroprotective, and rat adrenopheochromocytoma (PC12) cells have decreased PLA2 activity when DHA is present. To characterize DHA metabolism in PC12 cells, media were supplemented with [3H]DHA or [3H]glycerol. Fractions of nerve growth cone particles (NGC) and cell bodies were prepared and the metabolism of the radiolabeled substrates was determined by thin-layer chromatography. [3H]glycerol incorporation into phospholipids indicated de novo lipid synthesis. [3H]DHA uptake was more rapid in the cell bodies than in the NGC. [3H]DHA first esterified in neutral lipids and later in phospholipids (phosphatidylethanolamine). [3H]glycerol primarily labeled phosphatidylcholine. DHA uptake was compartmentalized between the cell body and the NGC. With metabolism similar to that seen in vivo, PC12 cells are an appropriate model to study DHA in neurons.</description><identifier>ISSN: 0364-3190</identifier><identifier>EISSN: 1573-6903</identifier><identifier>DOI: 10.1023/A:1007575406896</identifier><identifier>PMID: 10905634</identifier><identifier>CODEN: NEREDZ</identifier><language>eng</language><publisher>New York, NY: Springer</publisher><subject>Adrenal Gland Neoplasms ; Animals ; Biological and medical sciences ; Biological Transport ; Cell Differentiation - drug effects ; docosahexaenoic acid ; Docosahexaenoic Acids - metabolism ; Fundamental and applied biological sciences. Psychology ; Glycerol - metabolism ; Growth Cones - metabolism ; Growth Cones - ultrastructure ; Isolated neuron and nerve. Neuroglia ; Kinetics ; Nerve Growth Factor - pharmacology ; Neurites - metabolism ; Neurites - ultrastructure ; Neurons - cytology ; Neurons - metabolism ; PC12 Cells ; Pheochromocytoma ; Phosphatidylcholines - metabolism ; Phosphatidylethanolamines - metabolism ; Phospholipids - metabolism ; Rats ; Time Factors ; Tritium ; Vertebrates: nervous system and sense organs</subject><ispartof>Neurochemical research, 2000-05, Vol.25 (5), p.715-723</ispartof><rights>2000 INIST-CNRS</rights><rights>Copyright Kluwer Academic Publishers May 2000</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c340t-eed4cf29f7b696fb4e49a6f03be8ddb78aaee41964f7df3a11330ddaf414ff823</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=1453048$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/10905634$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>MARTIN, R. E</creatorcontrib><creatorcontrib>WICKHAM, J. Q</creatorcontrib><creatorcontrib>OM, A.-S</creatorcontrib><creatorcontrib>SANDERS, J</creatorcontrib><creatorcontrib>CEBALLOS, N</creatorcontrib><title>Uptake and incorporation of docosahexaenoic acid (DHA) into neuronal cell body and neurite/nerve growth cone lipids : Evidence of compartmental DHA metabolism in nerve growth factor-differentiated PC12 cells</title><title>Neurochemical research</title><addtitle>Neurochem Res</addtitle><description>Docosahexaenoic acid (DHA) accumulates in nerve endings of the brain during development. It is released from the membrane during ischemia and electroconvulsive shock. DHA optimizes neurologic development, it is neuroprotective, and rat adrenopheochromocytoma (PC12) cells have decreased PLA2 activity when DHA is present. To characterize DHA metabolism in PC12 cells, media were supplemented with [3H]DHA or [3H]glycerol. Fractions of nerve growth cone particles (NGC) and cell bodies were prepared and the metabolism of the radiolabeled substrates was determined by thin-layer chromatography. [3H]glycerol incorporation into phospholipids indicated de novo lipid synthesis. [3H]DHA uptake was more rapid in the cell bodies than in the NGC. [3H]DHA first esterified in neutral lipids and later in phospholipids (phosphatidylethanolamine). [3H]glycerol primarily labeled phosphatidylcholine. DHA uptake was compartmentalized between the cell body and the NGC. With metabolism similar to that seen in vivo, PC12 cells are an appropriate model to study DHA in neurons.</description><subject>Adrenal Gland Neoplasms</subject><subject>Animals</subject><subject>Biological and medical sciences</subject><subject>Biological Transport</subject><subject>Cell Differentiation - drug effects</subject><subject>docosahexaenoic acid</subject><subject>Docosahexaenoic Acids - metabolism</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Glycerol - metabolism</subject><subject>Growth Cones - metabolism</subject><subject>Growth Cones - ultrastructure</subject><subject>Isolated neuron and nerve. Neuroglia</subject><subject>Kinetics</subject><subject>Nerve Growth Factor - pharmacology</subject><subject>Neurites - metabolism</subject><subject>Neurites - ultrastructure</subject><subject>Neurons - cytology</subject><subject>Neurons - metabolism</subject><subject>PC12 Cells</subject><subject>Pheochromocytoma</subject><subject>Phosphatidylcholines - metabolism</subject><subject>Phosphatidylethanolamines - metabolism</subject><subject>Phospholipids - metabolism</subject><subject>Rats</subject><subject>Time Factors</subject><subject>Tritium</subject><subject>Vertebrates: nervous system and sense organs</subject><issn>0364-3190</issn><issn>1573-6903</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqF0U1vFSEUgGFiNPa2unZniDFGF2NhYD7o7ua2WpMmurDryRk4WOoMTIGp9lf6l5yp1xjduCIhD-8hQMgzzt5yVorj7QlnrKmaSrK6VfUDsuFVI4paMfGQbJioZSG4YgfkMKVrxhZc8sfkgDPFqlrIDflxOWX4ihS8oc7rEKcQIbvgabDUBB0SXOF3QB-cpqCdoa9Pz7dvFpsD9TjH4GGgGoeB9sHc3XfWbZfx2GO8Rfolhm_5iurgkQ5ucibRE3p26wx6jesUHcYJYh7R5yW11OmIGfowuDQuc-hfGQs6h1gYZy3G5YSDjIZ-2vHy_hLpCXlkYUj4dL8ekct3Z59358XFx_cfdtuLQgvJcoFopLalsk1fq9r2EqWC2jLRY2tM37QAiJKrWtrGWAGcC8GMASu5tLYtxRF59as7xXAzY8rd6NJ6A_AY5tQ1vBSlFNV_IW8qpZhciy_-gddhjsvrpq4sVyVataDnezT3I5puim6EeNf9_tAFvNwDSBoGG8Frl_44WQkmW_ET8-Wyrw</recordid><startdate>20000501</startdate><enddate>20000501</enddate><creator>MARTIN, R. E</creator><creator>WICKHAM, J. Q</creator><creator>OM, A.-S</creator><creator>SANDERS, J</creator><creator>CEBALLOS, N</creator><general>Springer</general><general>Springer Nature B.V</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>3V.</scope><scope>7QR</scope><scope>7TK</scope><scope>7U7</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope></search><sort><creationdate>20000501</creationdate><title>Uptake and incorporation of docosahexaenoic acid (DHA) into neuronal cell body and neurite/nerve growth cone lipids : Evidence of compartmental DHA metabolism in nerve growth factor-differentiated PC12 cells</title><author>MARTIN, R. E ; WICKHAM, J. Q ; OM, A.-S ; SANDERS, J ; CEBALLOS, N</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c340t-eed4cf29f7b696fb4e49a6f03be8ddb78aaee41964f7df3a11330ddaf414ff823</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Adrenal Gland Neoplasms</topic><topic>Animals</topic><topic>Biological and medical sciences</topic><topic>Biological Transport</topic><topic>Cell Differentiation - drug effects</topic><topic>docosahexaenoic acid</topic><topic>Docosahexaenoic Acids - metabolism</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Glycerol - metabolism</topic><topic>Growth Cones - metabolism</topic><topic>Growth Cones - ultrastructure</topic><topic>Isolated neuron and nerve. Neuroglia</topic><topic>Kinetics</topic><topic>Nerve Growth Factor - pharmacology</topic><topic>Neurites - metabolism</topic><topic>Neurites - ultrastructure</topic><topic>Neurons - cytology</topic><topic>Neurons - metabolism</topic><topic>PC12 Cells</topic><topic>Pheochromocytoma</topic><topic>Phosphatidylcholines - metabolism</topic><topic>Phosphatidylethanolamines - metabolism</topic><topic>Phospholipids - metabolism</topic><topic>Rats</topic><topic>Time Factors</topic><topic>Tritium</topic><topic>Vertebrates: nervous system and sense organs</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>MARTIN, R. E</creatorcontrib><creatorcontrib>WICKHAM, J. Q</creatorcontrib><creatorcontrib>OM, A.-S</creatorcontrib><creatorcontrib>SANDERS, J</creatorcontrib><creatorcontrib>CEBALLOS, N</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>ProQuest Central (Corporate)</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><jtitle>Neurochemical research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>MARTIN, R. E</au><au>WICKHAM, J. Q</au><au>OM, A.-S</au><au>SANDERS, J</au><au>CEBALLOS, N</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Uptake and incorporation of docosahexaenoic acid (DHA) into neuronal cell body and neurite/nerve growth cone lipids : Evidence of compartmental DHA metabolism in nerve growth factor-differentiated PC12 cells</atitle><jtitle>Neurochemical research</jtitle><addtitle>Neurochem Res</addtitle><date>2000-05-01</date><risdate>2000</risdate><volume>25</volume><issue>5</issue><spage>715</spage><epage>723</epage><pages>715-723</pages><issn>0364-3190</issn><eissn>1573-6903</eissn><coden>NEREDZ</coden><abstract>Docosahexaenoic acid (DHA) accumulates in nerve endings of the brain during development. It is released from the membrane during ischemia and electroconvulsive shock. DHA optimizes neurologic development, it is neuroprotective, and rat adrenopheochromocytoma (PC12) cells have decreased PLA2 activity when DHA is present. To characterize DHA metabolism in PC12 cells, media were supplemented with [3H]DHA or [3H]glycerol. Fractions of nerve growth cone particles (NGC) and cell bodies were prepared and the metabolism of the radiolabeled substrates was determined by thin-layer chromatography. [3H]glycerol incorporation into phospholipids indicated de novo lipid synthesis. [3H]DHA uptake was more rapid in the cell bodies than in the NGC. [3H]DHA first esterified in neutral lipids and later in phospholipids (phosphatidylethanolamine). [3H]glycerol primarily labeled phosphatidylcholine. DHA uptake was compartmentalized between the cell body and the NGC. With metabolism similar to that seen in vivo, PC12 cells are an appropriate model to study DHA in neurons.</abstract><cop>New York, NY</cop><pub>Springer</pub><pmid>10905634</pmid><doi>10.1023/A:1007575406896</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0364-3190 |
ispartof | Neurochemical research, 2000-05, Vol.25 (5), p.715-723 |
issn | 0364-3190 1573-6903 |
language | eng |
recordid | cdi_proquest_miscellaneous_71232435 |
source | MEDLINE; SpringerLink Journals - AutoHoldings |
subjects | Adrenal Gland Neoplasms Animals Biological and medical sciences Biological Transport Cell Differentiation - drug effects docosahexaenoic acid Docosahexaenoic Acids - metabolism Fundamental and applied biological sciences. Psychology Glycerol - metabolism Growth Cones - metabolism Growth Cones - ultrastructure Isolated neuron and nerve. Neuroglia Kinetics Nerve Growth Factor - pharmacology Neurites - metabolism Neurites - ultrastructure Neurons - cytology Neurons - metabolism PC12 Cells Pheochromocytoma Phosphatidylcholines - metabolism Phosphatidylethanolamines - metabolism Phospholipids - metabolism Rats Time Factors Tritium Vertebrates: nervous system and sense organs |
title | Uptake and incorporation of docosahexaenoic acid (DHA) into neuronal cell body and neurite/nerve growth cone lipids : Evidence of compartmental DHA metabolism in nerve growth factor-differentiated PC12 cells |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T22%3A56%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Uptake%20and%20incorporation%20of%20docosahexaenoic%20acid%20(DHA)%20into%20neuronal%20cell%20body%20and%20neurite/nerve%20growth%20cone%20lipids%20:%20Evidence%20of%20compartmental%20DHA%20metabolism%20in%20nerve%20growth%20factor-differentiated%20PC12%20cells&rft.jtitle=Neurochemical%20research&rft.au=MARTIN,%20R.%20E&rft.date=2000-05-01&rft.volume=25&rft.issue=5&rft.spage=715&rft.epage=723&rft.pages=715-723&rft.issn=0364-3190&rft.eissn=1573-6903&rft.coden=NEREDZ&rft_id=info:doi/10.1023/A:1007575406896&rft_dat=%3Cproquest_pubme%3E390357621%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=221759389&rft_id=info:pmid/10905634&rfr_iscdi=true |