Pluripotent cells (stem cells) and their determination and differentiation in early vertebrate embryogenesis

Mammalian embryonic stem cells can be obtained from the inner cell mass of blastocysts or from primordial germ cells. These stem cells are pluripotent and can develop into all three germ cell layers of the embryo. Somatic mammalian stem cells, derived from adult or fetal tissues, are more restricted...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Development, growth & differentiation growth & differentiation, 2001-10, Vol.43 (5), p.469-502
Hauptverfasser: Tiedemann, H., Asashima, M., Grunz, H., Knöchel, W.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 502
container_issue 5
container_start_page 469
container_title Development, growth & differentiation
container_volume 43
creator Tiedemann, H.
Asashima, M.
Grunz, H.
Knöchel, W.
description Mammalian embryonic stem cells can be obtained from the inner cell mass of blastocysts or from primordial germ cells. These stem cells are pluripotent and can develop into all three germ cell layers of the embryo. Somatic mammalian stem cells, derived from adult or fetal tissues, are more restricted in their developmental potency. Amphibian ectodermal and endodermal cells lose their pluripotency at the early gastrula stage. The dorsal mesoderm of the marginal zone is determined before the mid‐blastula transition by factors located after cortical rotation in the marginal zone, without induction by the endoderm. Secreted maternal factors (BMP, FGF and activins), maternal receptors and maternal nuclear factors (β‐catenin, Smad and Fast proteins), which form multiprotein transcriptional complexes, act together to initiate pattern formation. Following mid‐blastula transition in Xenopus laevis (Daudin) embryos, secreted nodal‐related (Xnr) factors become important for endoderm and mesoderm differentiation to maintain and enhance mesoderm induction. Endoderm can be induced by high concentrations of activin (vegetalizing factor) or nodal‐related factors, especially Xnr5 and Xnr6, which depend on Wnt/β‐catenin signaling and on VegT, a vegetal maternal transcription factor. Together, these and other factors regulate the equilibrium between endoderm and mesoderm development. Many genes are activated and/or repressed by more than one signaling pathway and by regulatory loops to refine the tuning of gene expression. The nodal related factors, BMP, activins and Vg1 belong to the TGF‐β superfamily. The homeogenetic neural induction by the neural plate probably reinforces neural induction and differentiation. Medical and ethical problems of future stem cell therapy are briefly discussed.
doi_str_mv 10.1046/j.1440-169X.2001.00599.x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_71205197</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>71205197</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4699-c44591984ef53b0317daa834c8851055cc930b82861b508976095b606723dfc63</originalsourceid><addsrcrecordid>eNqNkE1v2zAMhoVhRZum_QuDTsN2iEvakmwBuwz9Bgq0hw3oTZBtelPgj0xSuubf146D7doLSZDvS4IPYxwhQRDqYp2gELBCpZ-TFAATAKl18vqBLf4NPrLFOElXKHV6wk5DWAOAEJgesxNEmStUasHap3br3WaI1EdeUdsG_iVE6ub6K7d9zeNvcp7XFMl3rrfRDf2-X7umIT8a3dxzPSfr2x1_IR-p9DYSp670u-EX9RRcOGNHjW0DnR_ykv28uf5xebd6eLy9v_z-sKqE0nqMQmrUhaBGZiVkmNfWFpmoikIiSFlVOoOySAuFpYRC5wq0LBWoPM3qplLZkn2e92788GdLIZrOhekh29OwDSbHFCTqfBQWs7DyQwieGrPxrrN-ZxDMRNqszQTUTEDNRNrsSZvX0frpcGNbdlT_Nx7QjoJvs-Cva2n37sXm6vZqLLI3-luNaQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>71205197</pqid></control><display><type>article</type><title>Pluripotent cells (stem cells) and their determination and differentiation in early vertebrate embryogenesis</title><source>MEDLINE</source><source>Wiley Free Content</source><source>IngentaConnect Free/Open Access Journals</source><source>Open Access Titles of Japan</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Wiley Online Library All Journals</source><creator>Tiedemann, H. ; Asashima, M. ; Grunz, H. ; Knöchel, W.</creator><creatorcontrib>Tiedemann, H. ; Asashima, M. ; Grunz, H. ; Knöchel, W.</creatorcontrib><description>Mammalian embryonic stem cells can be obtained from the inner cell mass of blastocysts or from primordial germ cells. These stem cells are pluripotent and can develop into all three germ cell layers of the embryo. Somatic mammalian stem cells, derived from adult or fetal tissues, are more restricted in their developmental potency. Amphibian ectodermal and endodermal cells lose their pluripotency at the early gastrula stage. The dorsal mesoderm of the marginal zone is determined before the mid‐blastula transition by factors located after cortical rotation in the marginal zone, without induction by the endoderm. Secreted maternal factors (BMP, FGF and activins), maternal receptors and maternal nuclear factors (β‐catenin, Smad and Fast proteins), which form multiprotein transcriptional complexes, act together to initiate pattern formation. Following mid‐blastula transition in Xenopus laevis (Daudin) embryos, secreted nodal‐related (Xnr) factors become important for endoderm and mesoderm differentiation to maintain and enhance mesoderm induction. Endoderm can be induced by high concentrations of activin (vegetalizing factor) or nodal‐related factors, especially Xnr5 and Xnr6, which depend on Wnt/β‐catenin signaling and on VegT, a vegetal maternal transcription factor. Together, these and other factors regulate the equilibrium between endoderm and mesoderm development. Many genes are activated and/or repressed by more than one signaling pathway and by regulatory loops to refine the tuning of gene expression. The nodal related factors, BMP, activins and Vg1 belong to the TGF‐β superfamily. The homeogenetic neural induction by the neural plate probably reinforces neural induction and differentiation. Medical and ethical problems of future stem cell therapy are briefly discussed.</description><identifier>ISSN: 0012-1592</identifier><identifier>EISSN: 1440-169X</identifier><identifier>DOI: 10.1046/j.1440-169X.2001.00599.x</identifier><identifier>PMID: 11576166</identifier><language>eng</language><publisher>Melbourne, Australia: Blackwell Science Pty</publisher><subject>Animals ; beta Catenin ; Cell Differentiation ; Cell Lineage ; Cytoskeletal Proteins ; early differentiation ; Endoderm - physiology ; ethical problem ; human stem cell ; Humans ; Mesoderm - physiology ; Neurons - physiology ; Signal Transduction ; stem cell ; Stem Cells - physiology ; Trans-Activators ; vertebrate embryo ; Xenopus - embryology ; Xenopus Proteins</subject><ispartof>Development, growth &amp; differentiation, 2001-10, Vol.43 (5), p.469-502</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4699-c44591984ef53b0317daa834c8851055cc930b82861b508976095b606723dfc63</citedby><cites>FETCH-LOGICAL-c4699-c44591984ef53b0317daa834c8851055cc930b82861b508976095b606723dfc63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1046%2Fj.1440-169X.2001.00599.x$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1046%2Fj.1440-169X.2001.00599.x$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,778,782,1414,1430,27907,27908,45557,45558,46392,46816</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/11576166$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Tiedemann, H.</creatorcontrib><creatorcontrib>Asashima, M.</creatorcontrib><creatorcontrib>Grunz, H.</creatorcontrib><creatorcontrib>Knöchel, W.</creatorcontrib><title>Pluripotent cells (stem cells) and their determination and differentiation in early vertebrate embryogenesis</title><title>Development, growth &amp; differentiation</title><addtitle>Dev Growth Differ</addtitle><description>Mammalian embryonic stem cells can be obtained from the inner cell mass of blastocysts or from primordial germ cells. These stem cells are pluripotent and can develop into all three germ cell layers of the embryo. Somatic mammalian stem cells, derived from adult or fetal tissues, are more restricted in their developmental potency. Amphibian ectodermal and endodermal cells lose their pluripotency at the early gastrula stage. The dorsal mesoderm of the marginal zone is determined before the mid‐blastula transition by factors located after cortical rotation in the marginal zone, without induction by the endoderm. Secreted maternal factors (BMP, FGF and activins), maternal receptors and maternal nuclear factors (β‐catenin, Smad and Fast proteins), which form multiprotein transcriptional complexes, act together to initiate pattern formation. Following mid‐blastula transition in Xenopus laevis (Daudin) embryos, secreted nodal‐related (Xnr) factors become important for endoderm and mesoderm differentiation to maintain and enhance mesoderm induction. Endoderm can be induced by high concentrations of activin (vegetalizing factor) or nodal‐related factors, especially Xnr5 and Xnr6, which depend on Wnt/β‐catenin signaling and on VegT, a vegetal maternal transcription factor. Together, these and other factors regulate the equilibrium between endoderm and mesoderm development. Many genes are activated and/or repressed by more than one signaling pathway and by regulatory loops to refine the tuning of gene expression. The nodal related factors, BMP, activins and Vg1 belong to the TGF‐β superfamily. The homeogenetic neural induction by the neural plate probably reinforces neural induction and differentiation. Medical and ethical problems of future stem cell therapy are briefly discussed.</description><subject>Animals</subject><subject>beta Catenin</subject><subject>Cell Differentiation</subject><subject>Cell Lineage</subject><subject>Cytoskeletal Proteins</subject><subject>early differentiation</subject><subject>Endoderm - physiology</subject><subject>ethical problem</subject><subject>human stem cell</subject><subject>Humans</subject><subject>Mesoderm - physiology</subject><subject>Neurons - physiology</subject><subject>Signal Transduction</subject><subject>stem cell</subject><subject>Stem Cells - physiology</subject><subject>Trans-Activators</subject><subject>vertebrate embryo</subject><subject>Xenopus - embryology</subject><subject>Xenopus Proteins</subject><issn>0012-1592</issn><issn>1440-169X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkE1v2zAMhoVhRZum_QuDTsN2iEvakmwBuwz9Bgq0hw3oTZBtelPgj0xSuubf146D7doLSZDvS4IPYxwhQRDqYp2gELBCpZ-TFAATAKl18vqBLf4NPrLFOElXKHV6wk5DWAOAEJgesxNEmStUasHap3br3WaI1EdeUdsG_iVE6ub6K7d9zeNvcp7XFMl3rrfRDf2-X7umIT8a3dxzPSfr2x1_IR-p9DYSp670u-EX9RRcOGNHjW0DnR_ykv28uf5xebd6eLy9v_z-sKqE0nqMQmrUhaBGZiVkmNfWFpmoikIiSFlVOoOySAuFpYRC5wq0LBWoPM3qplLZkn2e92788GdLIZrOhekh29OwDSbHFCTqfBQWs7DyQwieGrPxrrN-ZxDMRNqszQTUTEDNRNrsSZvX0frpcGNbdlT_Nx7QjoJvs-Cva2n37sXm6vZqLLI3-luNaQ</recordid><startdate>200110</startdate><enddate>200110</enddate><creator>Tiedemann, H.</creator><creator>Asashima, M.</creator><creator>Grunz, H.</creator><creator>Knöchel, W.</creator><general>Blackwell Science Pty</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>200110</creationdate><title>Pluripotent cells (stem cells) and their determination and differentiation in early vertebrate embryogenesis</title><author>Tiedemann, H. ; Asashima, M. ; Grunz, H. ; Knöchel, W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4699-c44591984ef53b0317daa834c8851055cc930b82861b508976095b606723dfc63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Animals</topic><topic>beta Catenin</topic><topic>Cell Differentiation</topic><topic>Cell Lineage</topic><topic>Cytoskeletal Proteins</topic><topic>early differentiation</topic><topic>Endoderm - physiology</topic><topic>ethical problem</topic><topic>human stem cell</topic><topic>Humans</topic><topic>Mesoderm - physiology</topic><topic>Neurons - physiology</topic><topic>Signal Transduction</topic><topic>stem cell</topic><topic>Stem Cells - physiology</topic><topic>Trans-Activators</topic><topic>vertebrate embryo</topic><topic>Xenopus - embryology</topic><topic>Xenopus Proteins</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tiedemann, H.</creatorcontrib><creatorcontrib>Asashima, M.</creatorcontrib><creatorcontrib>Grunz, H.</creatorcontrib><creatorcontrib>Knöchel, W.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Development, growth &amp; differentiation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tiedemann, H.</au><au>Asashima, M.</au><au>Grunz, H.</au><au>Knöchel, W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Pluripotent cells (stem cells) and their determination and differentiation in early vertebrate embryogenesis</atitle><jtitle>Development, growth &amp; differentiation</jtitle><addtitle>Dev Growth Differ</addtitle><date>2001-10</date><risdate>2001</risdate><volume>43</volume><issue>5</issue><spage>469</spage><epage>502</epage><pages>469-502</pages><issn>0012-1592</issn><eissn>1440-169X</eissn><abstract>Mammalian embryonic stem cells can be obtained from the inner cell mass of blastocysts or from primordial germ cells. These stem cells are pluripotent and can develop into all three germ cell layers of the embryo. Somatic mammalian stem cells, derived from adult or fetal tissues, are more restricted in their developmental potency. Amphibian ectodermal and endodermal cells lose their pluripotency at the early gastrula stage. The dorsal mesoderm of the marginal zone is determined before the mid‐blastula transition by factors located after cortical rotation in the marginal zone, without induction by the endoderm. Secreted maternal factors (BMP, FGF and activins), maternal receptors and maternal nuclear factors (β‐catenin, Smad and Fast proteins), which form multiprotein transcriptional complexes, act together to initiate pattern formation. Following mid‐blastula transition in Xenopus laevis (Daudin) embryos, secreted nodal‐related (Xnr) factors become important for endoderm and mesoderm differentiation to maintain and enhance mesoderm induction. Endoderm can be induced by high concentrations of activin (vegetalizing factor) or nodal‐related factors, especially Xnr5 and Xnr6, which depend on Wnt/β‐catenin signaling and on VegT, a vegetal maternal transcription factor. Together, these and other factors regulate the equilibrium between endoderm and mesoderm development. Many genes are activated and/or repressed by more than one signaling pathway and by regulatory loops to refine the tuning of gene expression. The nodal related factors, BMP, activins and Vg1 belong to the TGF‐β superfamily. The homeogenetic neural induction by the neural plate probably reinforces neural induction and differentiation. Medical and ethical problems of future stem cell therapy are briefly discussed.</abstract><cop>Melbourne, Australia</cop><pub>Blackwell Science Pty</pub><pmid>11576166</pmid><doi>10.1046/j.1440-169X.2001.00599.x</doi><tpages>34</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0012-1592
ispartof Development, growth & differentiation, 2001-10, Vol.43 (5), p.469-502
issn 0012-1592
1440-169X
language eng
recordid cdi_proquest_miscellaneous_71205197
source MEDLINE; Wiley Free Content; IngentaConnect Free/Open Access Journals; Open Access Titles of Japan; EZB-FREE-00999 freely available EZB journals; Wiley Online Library All Journals
subjects Animals
beta Catenin
Cell Differentiation
Cell Lineage
Cytoskeletal Proteins
early differentiation
Endoderm - physiology
ethical problem
human stem cell
Humans
Mesoderm - physiology
Neurons - physiology
Signal Transduction
stem cell
Stem Cells - physiology
Trans-Activators
vertebrate embryo
Xenopus - embryology
Xenopus Proteins
title Pluripotent cells (stem cells) and their determination and differentiation in early vertebrate embryogenesis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T04%3A29%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Pluripotent%20cells%20(stem%20cells)%20and%20their%20determination%20and%20differentiation%20in%20early%20vertebrate%20embryogenesis&rft.jtitle=Development,%20growth%20&%20differentiation&rft.au=Tiedemann,%20H.&rft.date=2001-10&rft.volume=43&rft.issue=5&rft.spage=469&rft.epage=502&rft.pages=469-502&rft.issn=0012-1592&rft.eissn=1440-169X&rft_id=info:doi/10.1046/j.1440-169X.2001.00599.x&rft_dat=%3Cproquest_cross%3E71205197%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=71205197&rft_id=info:pmid/11576166&rfr_iscdi=true