Pluripotent cells (stem cells) and their determination and differentiation in early vertebrate embryogenesis
Mammalian embryonic stem cells can be obtained from the inner cell mass of blastocysts or from primordial germ cells. These stem cells are pluripotent and can develop into all three germ cell layers of the embryo. Somatic mammalian stem cells, derived from adult or fetal tissues, are more restricted...
Gespeichert in:
Veröffentlicht in: | Development, growth & differentiation growth & differentiation, 2001-10, Vol.43 (5), p.469-502 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 502 |
---|---|
container_issue | 5 |
container_start_page | 469 |
container_title | Development, growth & differentiation |
container_volume | 43 |
creator | Tiedemann, H. Asashima, M. Grunz, H. Knöchel, W. |
description | Mammalian embryonic stem cells can be obtained from the inner cell mass of blastocysts or from primordial germ cells. These stem cells are pluripotent and can develop into all three germ cell layers of the embryo. Somatic mammalian stem cells, derived from adult or fetal tissues, are more restricted in their developmental potency. Amphibian ectodermal and endodermal cells lose their pluripotency at the early gastrula stage. The dorsal mesoderm of the marginal zone is determined before the mid‐blastula transition by factors located after cortical rotation in the marginal zone, without induction by the endoderm. Secreted maternal factors (BMP, FGF and activins), maternal receptors and maternal nuclear factors (β‐catenin, Smad and Fast proteins), which form multiprotein transcriptional complexes, act together to initiate pattern formation. Following mid‐blastula transition in Xenopus laevis (Daudin) embryos, secreted nodal‐related (Xnr) factors become important for endoderm and mesoderm differentiation to maintain and enhance mesoderm induction. Endoderm can be induced by high concentrations of activin (vegetalizing factor) or nodal‐related factors, especially Xnr5 and Xnr6, which depend on Wnt/β‐catenin signaling and on VegT, a vegetal maternal transcription factor. Together, these and other factors regulate the equilibrium between endoderm and mesoderm development. Many genes are activated and/or repressed by more than one signaling pathway and by regulatory loops to refine the tuning of gene expression. The nodal related factors, BMP, activins and Vg1 belong to the TGF‐β superfamily. The homeogenetic neural induction by the neural plate probably reinforces neural induction and differentiation. Medical and ethical problems of future stem cell therapy are briefly discussed. |
doi_str_mv | 10.1046/j.1440-169X.2001.00599.x |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_71205197</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>71205197</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4699-c44591984ef53b0317daa834c8851055cc930b82861b508976095b606723dfc63</originalsourceid><addsrcrecordid>eNqNkE1v2zAMhoVhRZum_QuDTsN2iEvakmwBuwz9Bgq0hw3oTZBtelPgj0xSuubf146D7doLSZDvS4IPYxwhQRDqYp2gELBCpZ-TFAATAKl18vqBLf4NPrLFOElXKHV6wk5DWAOAEJgesxNEmStUasHap3br3WaI1EdeUdsG_iVE6ub6K7d9zeNvcp7XFMl3rrfRDf2-X7umIT8a3dxzPSfr2x1_IR-p9DYSp670u-EX9RRcOGNHjW0DnR_ykv28uf5xebd6eLy9v_z-sKqE0nqMQmrUhaBGZiVkmNfWFpmoikIiSFlVOoOySAuFpYRC5wq0LBWoPM3qplLZkn2e92788GdLIZrOhekh29OwDSbHFCTqfBQWs7DyQwieGrPxrrN-ZxDMRNqszQTUTEDNRNrsSZvX0frpcGNbdlT_Nx7QjoJvs-Cva2n37sXm6vZqLLI3-luNaQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>71205197</pqid></control><display><type>article</type><title>Pluripotent cells (stem cells) and their determination and differentiation in early vertebrate embryogenesis</title><source>MEDLINE</source><source>Wiley Free Content</source><source>IngentaConnect Free/Open Access Journals</source><source>Open Access Titles of Japan</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Wiley Online Library All Journals</source><creator>Tiedemann, H. ; Asashima, M. ; Grunz, H. ; Knöchel, W.</creator><creatorcontrib>Tiedemann, H. ; Asashima, M. ; Grunz, H. ; Knöchel, W.</creatorcontrib><description>Mammalian embryonic stem cells can be obtained from the inner cell mass of blastocysts or from primordial germ cells. These stem cells are pluripotent and can develop into all three germ cell layers of the embryo. Somatic mammalian stem cells, derived from adult or fetal tissues, are more restricted in their developmental potency. Amphibian ectodermal and endodermal cells lose their pluripotency at the early gastrula stage. The dorsal mesoderm of the marginal zone is determined before the mid‐blastula transition by factors located after cortical rotation in the marginal zone, without induction by the endoderm. Secreted maternal factors (BMP, FGF and activins), maternal receptors and maternal nuclear factors (β‐catenin, Smad and Fast proteins), which form multiprotein transcriptional complexes, act together to initiate pattern formation. Following mid‐blastula transition in Xenopus laevis (Daudin) embryos, secreted nodal‐related (Xnr) factors become important for endoderm and mesoderm differentiation to maintain and enhance mesoderm induction. Endoderm can be induced by high concentrations of activin (vegetalizing factor) or nodal‐related factors, especially Xnr5 and Xnr6, which depend on Wnt/β‐catenin signaling and on VegT, a vegetal maternal transcription factor. Together, these and other factors regulate the equilibrium between endoderm and mesoderm development. Many genes are activated and/or repressed by more than one signaling pathway and by regulatory loops to refine the tuning of gene expression. The nodal related factors, BMP, activins and Vg1 belong to the TGF‐β superfamily. The homeogenetic neural induction by the neural plate probably reinforces neural induction and differentiation. Medical and ethical problems of future stem cell therapy are briefly discussed.</description><identifier>ISSN: 0012-1592</identifier><identifier>EISSN: 1440-169X</identifier><identifier>DOI: 10.1046/j.1440-169X.2001.00599.x</identifier><identifier>PMID: 11576166</identifier><language>eng</language><publisher>Melbourne, Australia: Blackwell Science Pty</publisher><subject>Animals ; beta Catenin ; Cell Differentiation ; Cell Lineage ; Cytoskeletal Proteins ; early differentiation ; Endoderm - physiology ; ethical problem ; human stem cell ; Humans ; Mesoderm - physiology ; Neurons - physiology ; Signal Transduction ; stem cell ; Stem Cells - physiology ; Trans-Activators ; vertebrate embryo ; Xenopus - embryology ; Xenopus Proteins</subject><ispartof>Development, growth & differentiation, 2001-10, Vol.43 (5), p.469-502</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4699-c44591984ef53b0317daa834c8851055cc930b82861b508976095b606723dfc63</citedby><cites>FETCH-LOGICAL-c4699-c44591984ef53b0317daa834c8851055cc930b82861b508976095b606723dfc63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1046%2Fj.1440-169X.2001.00599.x$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1046%2Fj.1440-169X.2001.00599.x$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,778,782,1414,1430,27907,27908,45557,45558,46392,46816</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/11576166$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Tiedemann, H.</creatorcontrib><creatorcontrib>Asashima, M.</creatorcontrib><creatorcontrib>Grunz, H.</creatorcontrib><creatorcontrib>Knöchel, W.</creatorcontrib><title>Pluripotent cells (stem cells) and their determination and differentiation in early vertebrate embryogenesis</title><title>Development, growth & differentiation</title><addtitle>Dev Growth Differ</addtitle><description>Mammalian embryonic stem cells can be obtained from the inner cell mass of blastocysts or from primordial germ cells. These stem cells are pluripotent and can develop into all three germ cell layers of the embryo. Somatic mammalian stem cells, derived from adult or fetal tissues, are more restricted in their developmental potency. Amphibian ectodermal and endodermal cells lose their pluripotency at the early gastrula stage. The dorsal mesoderm of the marginal zone is determined before the mid‐blastula transition by factors located after cortical rotation in the marginal zone, without induction by the endoderm. Secreted maternal factors (BMP, FGF and activins), maternal receptors and maternal nuclear factors (β‐catenin, Smad and Fast proteins), which form multiprotein transcriptional complexes, act together to initiate pattern formation. Following mid‐blastula transition in Xenopus laevis (Daudin) embryos, secreted nodal‐related (Xnr) factors become important for endoderm and mesoderm differentiation to maintain and enhance mesoderm induction. Endoderm can be induced by high concentrations of activin (vegetalizing factor) or nodal‐related factors, especially Xnr5 and Xnr6, which depend on Wnt/β‐catenin signaling and on VegT, a vegetal maternal transcription factor. Together, these and other factors regulate the equilibrium between endoderm and mesoderm development. Many genes are activated and/or repressed by more than one signaling pathway and by regulatory loops to refine the tuning of gene expression. The nodal related factors, BMP, activins and Vg1 belong to the TGF‐β superfamily. The homeogenetic neural induction by the neural plate probably reinforces neural induction and differentiation. Medical and ethical problems of future stem cell therapy are briefly discussed.</description><subject>Animals</subject><subject>beta Catenin</subject><subject>Cell Differentiation</subject><subject>Cell Lineage</subject><subject>Cytoskeletal Proteins</subject><subject>early differentiation</subject><subject>Endoderm - physiology</subject><subject>ethical problem</subject><subject>human stem cell</subject><subject>Humans</subject><subject>Mesoderm - physiology</subject><subject>Neurons - physiology</subject><subject>Signal Transduction</subject><subject>stem cell</subject><subject>Stem Cells - physiology</subject><subject>Trans-Activators</subject><subject>vertebrate embryo</subject><subject>Xenopus - embryology</subject><subject>Xenopus Proteins</subject><issn>0012-1592</issn><issn>1440-169X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkE1v2zAMhoVhRZum_QuDTsN2iEvakmwBuwz9Bgq0hw3oTZBtelPgj0xSuubf146D7doLSZDvS4IPYxwhQRDqYp2gELBCpZ-TFAATAKl18vqBLf4NPrLFOElXKHV6wk5DWAOAEJgesxNEmStUasHap3br3WaI1EdeUdsG_iVE6ub6K7d9zeNvcp7XFMl3rrfRDf2-X7umIT8a3dxzPSfr2x1_IR-p9DYSp670u-EX9RRcOGNHjW0DnR_ykv28uf5xebd6eLy9v_z-sKqE0nqMQmrUhaBGZiVkmNfWFpmoikIiSFlVOoOySAuFpYRC5wq0LBWoPM3qplLZkn2e92788GdLIZrOhekh29OwDSbHFCTqfBQWs7DyQwieGrPxrrN-ZxDMRNqszQTUTEDNRNrsSZvX0frpcGNbdlT_Nx7QjoJvs-Cva2n37sXm6vZqLLI3-luNaQ</recordid><startdate>200110</startdate><enddate>200110</enddate><creator>Tiedemann, H.</creator><creator>Asashima, M.</creator><creator>Grunz, H.</creator><creator>Knöchel, W.</creator><general>Blackwell Science Pty</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>200110</creationdate><title>Pluripotent cells (stem cells) and their determination and differentiation in early vertebrate embryogenesis</title><author>Tiedemann, H. ; Asashima, M. ; Grunz, H. ; Knöchel, W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4699-c44591984ef53b0317daa834c8851055cc930b82861b508976095b606723dfc63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Animals</topic><topic>beta Catenin</topic><topic>Cell Differentiation</topic><topic>Cell Lineage</topic><topic>Cytoskeletal Proteins</topic><topic>early differentiation</topic><topic>Endoderm - physiology</topic><topic>ethical problem</topic><topic>human stem cell</topic><topic>Humans</topic><topic>Mesoderm - physiology</topic><topic>Neurons - physiology</topic><topic>Signal Transduction</topic><topic>stem cell</topic><topic>Stem Cells - physiology</topic><topic>Trans-Activators</topic><topic>vertebrate embryo</topic><topic>Xenopus - embryology</topic><topic>Xenopus Proteins</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tiedemann, H.</creatorcontrib><creatorcontrib>Asashima, M.</creatorcontrib><creatorcontrib>Grunz, H.</creatorcontrib><creatorcontrib>Knöchel, W.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Development, growth & differentiation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tiedemann, H.</au><au>Asashima, M.</au><au>Grunz, H.</au><au>Knöchel, W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Pluripotent cells (stem cells) and their determination and differentiation in early vertebrate embryogenesis</atitle><jtitle>Development, growth & differentiation</jtitle><addtitle>Dev Growth Differ</addtitle><date>2001-10</date><risdate>2001</risdate><volume>43</volume><issue>5</issue><spage>469</spage><epage>502</epage><pages>469-502</pages><issn>0012-1592</issn><eissn>1440-169X</eissn><abstract>Mammalian embryonic stem cells can be obtained from the inner cell mass of blastocysts or from primordial germ cells. These stem cells are pluripotent and can develop into all three germ cell layers of the embryo. Somatic mammalian stem cells, derived from adult or fetal tissues, are more restricted in their developmental potency. Amphibian ectodermal and endodermal cells lose their pluripotency at the early gastrula stage. The dorsal mesoderm of the marginal zone is determined before the mid‐blastula transition by factors located after cortical rotation in the marginal zone, without induction by the endoderm. Secreted maternal factors (BMP, FGF and activins), maternal receptors and maternal nuclear factors (β‐catenin, Smad and Fast proteins), which form multiprotein transcriptional complexes, act together to initiate pattern formation. Following mid‐blastula transition in Xenopus laevis (Daudin) embryos, secreted nodal‐related (Xnr) factors become important for endoderm and mesoderm differentiation to maintain and enhance mesoderm induction. Endoderm can be induced by high concentrations of activin (vegetalizing factor) or nodal‐related factors, especially Xnr5 and Xnr6, which depend on Wnt/β‐catenin signaling and on VegT, a vegetal maternal transcription factor. Together, these and other factors regulate the equilibrium between endoderm and mesoderm development. Many genes are activated and/or repressed by more than one signaling pathway and by regulatory loops to refine the tuning of gene expression. The nodal related factors, BMP, activins and Vg1 belong to the TGF‐β superfamily. The homeogenetic neural induction by the neural plate probably reinforces neural induction and differentiation. Medical and ethical problems of future stem cell therapy are briefly discussed.</abstract><cop>Melbourne, Australia</cop><pub>Blackwell Science Pty</pub><pmid>11576166</pmid><doi>10.1046/j.1440-169X.2001.00599.x</doi><tpages>34</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0012-1592 |
ispartof | Development, growth & differentiation, 2001-10, Vol.43 (5), p.469-502 |
issn | 0012-1592 1440-169X |
language | eng |
recordid | cdi_proquest_miscellaneous_71205197 |
source | MEDLINE; Wiley Free Content; IngentaConnect Free/Open Access Journals; Open Access Titles of Japan; EZB-FREE-00999 freely available EZB journals; Wiley Online Library All Journals |
subjects | Animals beta Catenin Cell Differentiation Cell Lineage Cytoskeletal Proteins early differentiation Endoderm - physiology ethical problem human stem cell Humans Mesoderm - physiology Neurons - physiology Signal Transduction stem cell Stem Cells - physiology Trans-Activators vertebrate embryo Xenopus - embryology Xenopus Proteins |
title | Pluripotent cells (stem cells) and their determination and differentiation in early vertebrate embryogenesis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T04%3A29%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Pluripotent%20cells%20(stem%20cells)%20and%20their%20determination%20and%20differentiation%20in%20early%20vertebrate%20embryogenesis&rft.jtitle=Development,%20growth%20&%20differentiation&rft.au=Tiedemann,%20H.&rft.date=2001-10&rft.volume=43&rft.issue=5&rft.spage=469&rft.epage=502&rft.pages=469-502&rft.issn=0012-1592&rft.eissn=1440-169X&rft_id=info:doi/10.1046/j.1440-169X.2001.00599.x&rft_dat=%3Cproquest_cross%3E71205197%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=71205197&rft_id=info:pmid/11576166&rfr_iscdi=true |